Noninvasive Cardiac Output Measurement Using Partial Carbon Dioxide Rebreathing Is Less Accurate at Settings of Reduced Minute Ventilation and when Spontaneous Breathing Is Present

Author:

Tachibana Kazuya1,Imanaka Hideaki2,Takeuchi Muneyuki1,Takauchi Yuji1,Miyano Hiroshi1,Nishimura Masaji3

Affiliation:

1. Staff Physician.

2. Director, Surgical Intensive Care Unit, National Cardiovascular Center.

3. Associate Professor, Intensive Care Unit, Osaka University Hospital, Osaka, Japan.

Abstract

Background Although evaluation of cardiac output by the partial carbon dioxide rebreathing technique is as accurate as thermodilution techniques under controlled mechanical ventilation, it is less accurate at low tidal volume. It is not clear whether reduced accuracy is due to low tidal volume or low minute ventilation. The effect of spontaneous breathing on the accuracy of partial carbon dioxide rebreathing measurement has not been fully investigated. The objectives of the current study were to investigate whether tidal volume or minute ventilation is the dominant factor for the accuracy, and the accuracy of the technique when spontaneous breathing effort is present. Methods The authors enrolled 25 post-cardiac surgery patients in two serial protocols. First, the authors applied three settings of controlled mechanical ventilation in random order: large tidal volume (12 ml/kg), the same minute ventilation with a small tidal volume (6 ml/kg), and 50% decreased minute ventilation with a small tidal volume (6 ml/kg). Second, when the patient recovered spontaneous breathing, the authors applied three conditions of partial ventilatory support in random order: synchronized intermittent mandatory ventilation-pressure support ventilation, pressure support ventilation with an appropriately adjusted rebreathing loop, and pressure support ventilation with the shortest available loop. After establishing steady state conditions, the authors measured cardiac output using both partial carbon dioxide rebreathing and thermodilution methods. The correlation between the data yielded by the two methods was determined by Bland-Altman analysis and linear regression. Results Cardiac output with the carbon dioxide rebreathing technique correlated moderately with that measured by thermodilution when minute ventilation was set to maintain normocapnia, regardless of tidal volumes. However, when minute ventilation was set low, the carbon dioxide rebreathing technique underreported cardiac output (y = 0.70x; correlation coefficient, 0.34; bias, -1.73 l/min; precision, 1.27 l/min; limits of agreement, -4.27 to +0.81 l/min). When there was spontaneous breathing, the correlation between the two cardiac output measurements became worse. Carbon dioxide rebreathing increased spontaneous tidal volume and respiratory rate (20% and 30%, respectively, during pressure support ventilation) when the rebreathing loop was adjusted for large tidal volume. Conclusions During controlled mechanical ventilation, minute ventilation rather than tidal volume affected the accuracy of cardiac output measurement using the partial carbon dioxide rebreathing technique. When spontaneous breathing is present, the carbon dioxide rebreathing technique is less accurate and increases spontaneous tidal volume and respiratory rate.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference14 articles.

Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3