Affiliation:
1. Resident in Anesthesia. Current position: Postdoctoral Research Fellow, Department of Anesthesia Research Laboratories, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.
2. Professor of Physiology.
3. Professor and Chair of Anesthesia.
4. Anesthesiologist.
Abstract
Background
The local anesthetic bupivacaine exists in two stereoisomeric forms, R(+)- and S(-)-bupivacaine. Because of its lower cardiac and central nervous system toxicity, attempts were made recently to introduce S(-)-bupivacaine into clinical anesthesia. We investigated stereoselective actions of R(+)-and S(-)-bupivacaine toward two local anesthetic-sensitive ion channels in peripheral nerve, the Na+ and the flicker K+ channel.
Methods
In patch-clamp experiments on enzymatically demyelinated peripheral amphibian nerve fibers, Na+ and flicker K+ channels were investigated in outside-out patches. Half-maximum inhibiting concentrations (IC50) were determined. For the flicker K+ channel, simultaneous block by R(+)-bupivacaine and S(-)-bupivacaine was analyzed for competition and association (k1) and dissociation rate constants (k(-1)) were determined.
Results
Both channels were reversibly blocked by R(+)- and S(-)-bupivacaine. The IC50 values (+/- SEM) for tonic Na+ channel block were 29+/-3 microM and 44+/-3 microM, respectively. IC50 values for flicker K+ channel block were 0.15+/-0.02 microM and 11+/-1 microM, respectively, resulting in a high stereopotency ratio (+/-) of 73. Simultaneously applied enantiomers competed for a single binding site. Rate constants k1 and k(-1) were 0.83+/-0.13x10(6) M(-1) x S(-1) and 0.13+/-0.03 s(-1), respectively, for R(+)-bupivacaine and 1.90+/-0.20x10(6) M(-1) x s(-1) and 8.3+/-1.0 s(-1), respectively, for S(-)-bupivacaine.
Conclusions
Bupivacaine block of Na+ channels shows no salient stereoselectivity. Block of flicker K+ channels has the highest stereoselectivity ratio of bupivacaine action known so far. This stereoselectivity derives predominantly from a difference in k(-1), suggesting a tight fit between R(+)-bupivacaine and the binding site. The flicker K+ channel may play an important role in yet unknown toxic mechanisms of R(+)-bupivacaine.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Anesthesiology and Pain Medicine
Cited by
40 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献