Mitochondrial Complex I Function Affects Halothane Sensitivity in Caenorhabditis elegans

Author:

Kayser Ernst-Bernhard1,Morgan Phil G.2,Sedensky Margaret M.2

Affiliation:

1. Research Associate, Department of Anesthesiology.

2. Professor, Departments of Anesthesiology and Genetics, University Hospitals and Case Western Reserve University.

Abstract

Background : The gene gas-1 encodes a subunit of complex I of the mitochondrial electron transport chain in Caenorhabditis elegans. A mutation in gas-1 profoundly increases sensitivity of C. elegans to volatile anesthetics. It is unclear which aspects of mitochondrial function account for the hypersensitivity of the mutant. Methods : Oxidative phosphorylation was determined by measuring mitochondrial oxygen consumption using electron donors specific for either complex I or complex II. Adenosine triphosphate concentrations were determined by measuring luciferase activity. Oxidative damage to mitochondrial proteins was identified using specific antibodies. Results : Halothane inhibited oxidative phosphorylation in isolated wild-type mitochondria within a concentration range that immobilizes intact worms. At equal halothane concentrations, complex I activity but not complex II activity was lower in mitochondria from mutant (gas-1) animals than from wild-type (N2) animals. The halothane concentrations needed to immobilize 50% of N2 or gas-1 animals, respectively, did not reduce oxidative phosphorylation to identical rates in the two strains. In air, adenosine triphosphate concentrations were similar for N2 and gas-1 but were decreased in the presence of halothane only in gas-1 animals. Oxygen tension changed the sensitivity of both strains to halothane. When nematodes were raised in room air, oxidative damage to mitochondrial proteins was increased in the mutant animal compared with the wild type. Conclusions : Rates of oxidative phosphorylation and changes in adenosine triphosphate concentrations by themselves do not control anesthetic-induced immobility of wild-type C. elegans. However, they may contribute to the increased sensitivity to volatile anesthetics of the gas-1 mutant. Oxidative damage to proteins may be an important contributor to sensitivity to volatile anesthetics in C. elegans.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference37 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3