Propofol Modulates the Effects of Chemoconvulsants Acting at GABAergic, Glycinergic, and Glutamate Receptor Subtypes

Author:

Bansinath Mylarrao,Shukla Vijay Kumar,Turndorf Herman

Abstract

Background Propofol has been used to treat status epilepticus, but its use in patients with seizure disorders remains controversial, because of concerns that it produces paroxysmal motor phenomenon. Chemoconvulsants act by known discrete mechanisms and neurotransmitters, and therefore, they are useful tools for screening anticonvulsant activity. The main objective of this study was to characterize the effect of propofol pretreatment on convulsions induced by picrotoxin, bicuculline, and strychnine, all which decrease inhibitory neurotransmission, and by N-methyl-D-aspartic acid, kainic acid, and quisqualic acid, which enhance excitatory neurotransmission. Methods Groups of male Swiss Webster mice (n > or = 10/group) were given either vehicle (intralipid, 10 ml.kg-1, control groups) or propofol (50 mg.kg-1, test groups) injected intraperitoneally. Five min after injection, convulsions were induced with either bicuculline (1.36-5.44 nmoles), picrotoxin (0.21-1 nmol), N-methyl-D-aspartic acid (0.51-2 nmol), quisqualic acid (1-10 nmol), kainic acid (0.252-2 mole), or strychnine (1.35-10.78 nmol) injected intracerebroventricularly. The number of animals with convulsions after each dose was recorded. Analysis of statistical significance was based on the log-probit lines of the quantal dose-response for the respective control and test groups, calculated 50% effective doses (ED50), the potency ratios (ED50higher/ED50lower) and their 95% confidence limits. Results Propofol pretreatment decreased the potency ratio of both bicuculline (0.47, 95% confidence interval = 0.23-0.94) and picrotoxin (0.61, 0.47-0.79), signifying an anticonvulsant effect. Conversely, propofol pretreatment significantly enhanced the convulsive potency of kainic acid (potency ratio and 95% confidence interval = 1.66, 1.21-2.29), quisqualic acid (3.17, 1.98-5.09), and strychnine (1.76, 0.79-3.89). Conclusions Current results suggest that propofol augments the paroxysmal motor phenomenon induced by kainic acid, quisqualic acid, and strychnine. This action may be, at least partly, responsible for the motor manifestations reported after propofol administration. These in vivo results on modulation of gamma-aminobutyric acid, glycine, alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, and kainate receptor-mediated transmission may be of significance in understanding the mechanism of propofol action at the excitatory and inhibitory amino acid receptors.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference42 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3