Halothane and Isoflurane Inhibit Endothelium-derived Relaxing Factor-dependent Cyclic Guanosine Monophosphate Accumulation in Endothelial Cell-Vascular Smooth Muscle Co-cultures Independent of an Effect on Guanylyl Cyclase Activation

Author:

Johns Roger A.,Tichotsky Alexandra,Muro Michael,Spaeth James P.,Le Cras Timothy D.,Rengasamy Appavoo

Abstract

Background Interaction of inhalational anesthetics with the nitric oxide signaling pathway and the mechanism of such effects are controversial. The aim of this study was to clarify the sites and mechanism of inhalational anesthetic interaction with the vascular nitric oxide and guanylyl cyclase signaling pathway. Methods To specifically study the mechanism of anesthetic interaction with the nitric oxide-guanylyl cyclase pathway, cultured vascular smooth muscle and endothelial cell-vascular smooth muscle (EC-VSM) co-culture models were chosen. Monolayer cultures of VSM with or without cultured endothelial cells grown on microcarrier beads were preequilibrated with anesthetic and stimulated with agonists. The effect of inhalational anesthetics on cyclic guanosine monophosphate (GMP) content of unstimulated VSM and of VSM in which soluble guanylyl cyclase had been activated by the endothelium-independent nitrovasodilators, sodium nitroprusside, nitroglycerin, or nitric oxide was determined. Experiments were also performed to assess the effect of inhalational anesthetics on unstimulated endothelial cell-vascular smooth muscle co-cultures and on co-cultures in which nitric oxide synthase and subsequent cyclic GMP production had been activated by the receptor-mediated agonists bradykinin and adenosine triphosphate and by the non-receptor-mediated calcium ionophore A23187. Results Increasing concentrations of halothane and isoflurane from 0.5 to 5% had no effect on basal cyclic GMP concentrations in cultured VSM alone or in endothelial cell-vascular smooth muscle co-cultures, and had no effect on sodium nitroprusside, nitroglycerin, or nitric oxide stimulated cyclic GMP accumulation in cultured VSM. In agonist-stimulated co-cultures, however, halothane and isoflurane significantly (P < 0.05) inhibited increases in cyclic GMP concentration in response to both receptor- and non-receptor-mediated nitric oxide synthase activating agents. Conclusions Inhalational anesthetics do not stimulate or inhibit basal cyclic GMP production in co-cultures or VSM, suggesting that inhalational anesthetics do not activate soluble or particulate guanylyl cyclase and do not activate nitric oxide synthase. Inhalational anesthetics do not inhibit nitrovasodilator-induced cyclic GMP formation, suggesting a lack of interference with soluble guanylyl cyclase activation. Inhalational anesthetics inhibit both agonist and calcium ionophore-stimulated nitric oxide-dependent cyclic GMP accumulation in endothelial cell-vascular smooth muscle co-cultures. Consistent with previous vascular ring studies, anesthetics appear to inhibit nitric oxide-guanylyl cyclase signaling distal to receptor activation in the endothelial cell and proximal to nitric oxide activation of guanylyl cyclase.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference37 articles.

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3