Pharmacokinetics of Intrathecal Oligodeoxynucleotides

Author:

Krupp Jennifer L.1,Bernards Christopher M.2

Affiliation:

1. Assistant Professor of Anesthesiology, Indiana University School of Medicine, Indianapolis, Indiana.

2. Professor of Anesthesiology, University of Washington.

Abstract

Background Intrathecal administration of antisense oligonucleotides is a frequently used technique to alter gene expression for research purposes. However, in the future, antisense oligonucleotides will likely be administered intrathecally to humans for therapeutic purposes. To date, there have been no systematic studies of the pharmacokinetics of intrathecal oligonucleotides. This study was designed to fill that knowledge gap. Methods Microdialysis probes were placed intrathecally at the L4, L1, and T11 vertebral levels and epidurally at the L4 vertebral level in pigs. One of the study oligodeoxynucleotides (10-, 18-, or 30-nucleotide-long sequences of the human MDR-1 gene) was injected intrathecally at the L4 level at time 0. Microdialysis samples were obtained for measurement of oligodeoxynucleotide samples at 5-min intervals until 20 min, 10-min intervals until 60 min, and 20-min intervals until 180 min. Noncompartmental pharmacokinetic analysis was performed using PK Solutions software. Results Mean residence time and terminal elimination half-life did not differ significantly among the three oligodeoxynucleotides at any sampling site. In contrast, area under the concentration-time curve differed significantly among the oligodeoxynucleotides at all sampling sites and was inversely related to oligodeoxynucleotide length at the L4 and L1 intrathecal sites but not the T11 or epidural sampling sites. Similarly, clearance and volumes of distribution at the L4 level differed significantly among the oligodeoxynucleotides and were directly related to oligodeoxynucleotide length. Conclusion The intrathecal pharmacokinetics of oligodeoxynucleotides are largely determined by oligodeoxynucleotide length. This contrasts with smaller drug molecules, such as opioids, for which intrathecal and epidural pharmacokinetics are largely determined by lipid solubility, not size. The potential clinical utility of this information is that oligodeoxynucleotide distribution within the central nervous system may be controllable to some degree by varying oligodeoxynucleotide length.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference18 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3