Effect of ONO1714, a Specific Inducible Nitric Oxide Synthase Inhibitor, on Lung Lymph Filtration and Gas Exchange during Endotoxemia in Unanesthetized Sheep

Author:

Koizumi Tomonobu1,Ogasawara Hitoshi2,Yamamato Hiroshi2,Tsushima Kenji2,Ruan Zonghai3,Jian Mingyuan3,Fujimoto Keisaku4,Kubo Keishi5

Affiliation:

1. Associate Professor.

2. Staff.

3. Graduate Student.

4. Assistant Professor.

5. Professor.

Abstract

Background The effect of nitric oxide synthase inhibitor on acute lung injury remains controversial. The current study was designed to examine effects of a newly synthesized and selective inducible nitric oxide synthase inhibitor, ONO1714, on endotoxin-induced lung injury in unanesthetized sheep. Methods Thirteen unanesthetized sheep chronically instrumented with a lung lymph fistula and vascular catheters for monitoring were prepared. Animals were randomly allocated into two experimental groups. In experiment 1, sheep (n = 6) were infused only with endotoxin (1 microg/kg) for 30 min. In experiment 2, sheep (n = 7) were pretreated with ONO1714 (0.1 mg/kg) before 30 min of endotoxin administration, and the endotoxin was infused in the same manner as in experiment 1. Mean pulmonary arterial pressure, left atrial pressure, systemic arterial pressure, and lung lymph flow were measured. Observation was continued over 5 h after endotoxin administration. Results ONO1714 did not cause any pulmonary hemodynamic changes at baseline or exert any influences on transient pulmonary hypertension and increased pulmonary vascular resistance during endotoxemia. However, inducible nitric oxide synthase inhibition with ONO1714 significantly reduced lung lymph filtration and improved abnormal oxygenation during endotoxemia. In addition, increased nitrate-nitrite in plasma and lung lymph in response to endotoxin was prevented by treatment with ONO1714. Conclusions These findings suggest that nitric oxide release by the inducible nitric oxide synthase pathway partially contributes to the increased permeability of pulmonary edema and decreased oxygenation during endotoxemia in sheep.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference35 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3