Author:
Njoku Dolores B.,Pohl Lance R.,Sokoloski Edward A.,Marchick Michael R.,Borkowf Craig B.,Martin Jackie L.
Abstract
Background
Compound A, a degradation product of sevoflurane, causes renal corticomedullary necrosis in rats. Although the toxicity of this compound was originally hypothesized to result from the biotransformation of its cysteine conjugates into toxic thionoacyl halide metabolites by renal cysteine conjugate beta-lyase, recent evidence suggests that alternative mechanisms may be responsible for compound A nephrotoxicity. The aim of this study was to evaluate these issues by determining whether mercapturates and glutathione conjugates of compound A could produce renal corticomedullary necrosis in rats, similar to compound A, and whether renal covalent adducts of the thionacyl halide metabolite of compound A could be detected immunochemically.
Methods
Male Wistar rats were administered, intraperitoneally, N-acetylcysteine conjugates (mercapturates) of compound A (90 or 180 micromol/kg) or glutathione conjugates of compound A (180 micromol/kg) with or without intraperitoneal pretreatments with aminooxyacetic acid (500 micromol/kg) or acivicin (250 micromol/kg). Rats were killed after 24 h, and kidney tissues were analyzed for toxicity by histologic examination or for protein adducts by immunoblotting or immunohistochemical analysis, using antisera raised against the covalently bound thionoacyl halide metabolite of compound A.
Results
Mercapturates and glutathione conjugates of compound A both produced renal corticomedullary necrosis similar to that caused by compound A. Aminooxyacetic acid, an inhibitor of renal cysteine conjugate beta-lyase, did not inhibit the toxicity of the mercapturates, whereas acivicin, an inhibitor of gamma-glutamyltranspeptidase, potentiated the toxicity of both classes of conjugates. No immunochemical evidence for renal protein adducts of the thionacyl halide metabolite was found in rats 24 h after the administration of the mercapturates of compound A or in the kidneys of rats, obtained from a previous study, 5 and 24 h after the administration of compound A.
Conclusion
The results of this study are consistent with the idea that a mechanism other than the renal cysteine conjugate beta-lyase pathway of metabolic activation is responsible for the nephrotoxicity of compound A and its glutathione and mercapturate conjugates in male Wistar rats.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Anesthesiology and Pain Medicine
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献