Author:
Goto Takahisa,Saito Hayato,Nakata Yoshinori,Uezono Shoichi,Ichinose Fumito,Uchiyama Masanori,Morita Shigeho
Abstract
Background
The anesthetic gas xenon has distinctly different physical properties compared with air, nitrous oxide, or oxygen. This led us to predict that xenon would affect the performance of commercially available flowmeters.
Methods
Flow was generated by an anesthesia ventilator connected to a lung simulator via a semiclosed breathing circuit. With the system filled with air or with various concentrations of xenon or nitrous oxide in a balance of oxygen, the tidal volume was measured with two rotating vanes, a Pitot tube, a variable-orifice flowmeter, and two constant-temperature hot-wire flowmeters.
Results
Although xenon minimally affected both rotating vane flowmeters, it caused the Pitot tube and the variable-orifice flowmeters to overread in proportion to the square root of the density of the gas mixture used (xenon is 4.6 times more dense than air). In contrast, the hot-wire anemometers underread with xenon; for example, their readings in the presence of 45% and 70% xenon were less than 10% of those displayed when air was used. Nitrous oxide minimally affected all the flowmeters except the variable-orifice device. The Pitot flowmeter was also affected, but only when its gas analyzer port was open to the ambient air so that it no longer corrected its readings for changes in gas composition. In these cases, nitrous oxide produced overreadings in the same manner as did xenon.
Conclusion
Among the four types of flowmeters studied, only the rotating-vane type is sufficiently accurate for use during anesthesia with xenon.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Anesthesiology and Pain Medicine
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献