Isoflurane Disrupts Central Pattern Generator Activity and Coordination in the Lamprey Isolated Spinal Cord

Author:

Jinks Steven L.1,Atherley Richard J.2,Dominguez Carmen L.1,Sigvardt Karen A.3,Antognini Joseph F.4

Affiliation:

1. Assistant Professor.

2. Technician.

3. Professor, Department of Neurology and Center for Neuroscience, University of California School of Medicine, Davis.

4. Professor, Department of Anesthesiology and Pain Medicine.

Abstract

Background Although volatile anesthetics such as isoflurane can depress sensory and motor neurons in the spinal cord, movement occurring during anesthesia can be coordinated, involving multiple limbs as well as the head and trunk. However, it is unclear whether volatile anesthetics depress locomotor interneurons comprising central pattern generators or disrupt intersegmental central pattern generator coordination. Methods Lamprey spinal cords were excised during anesthesia and placed in a bath containing artificial cerebrospinal fluid and D-glutamate to induce fictive swimming. The rostral, middle, and caudal regions were bath-separated using acrylic partitions and petroleum jelly, and in each compartment, the authors recorded ventral root activity. The authors selectively delivered isoflurane (0.5, 1, and 1.5%) only to the middle segments of the spinal cord. Spectral analyses were then used to assess isoflurane effects on central pattern generator activity and coordination. Results Isoflurane dose-dependently reduced fictive locomotor activity in all three compartments, with 1.5% isoflurane nearly eliminating activity in the middle compartment and reducing spectral amplitudes in the anesthetic-free rostral and caudal compartments to 23% and 31% of baseline, respectively. Isoflurane decreased burst frequency in the caudal compartment only, to 53% of baseline. Coordination of central pattern generator activity between the rostral and caudal compartments was also dose-dependently decreased, to 42% of control at 1.5% isoflurane. Conclusion Isoflurane disrupts motor output by reducing interneuronal central pattern generator activity in the spinal cord. The effects of isoflurane on motor output outside the site of isoflurane application were presumably independent of effects on sensory or motor neurons.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference61 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3