Action of Isoflurane on the Substantia Gelatinosa Neurons of the Adult Rat Spinal Cord

Author:

Wakai Ayako1,Kohno Tatsuro2,Yamakura Tomohiro3,Okamoto Manabu2,Ataka Toyofumi2,Baba Hiroshi4

Affiliation:

1. Graduate Student.

2. Assistant Professor.

3. Associate Professor.

4. Professor and Chairman.

Abstract

Background Although isoflurane, a volatile anesthetic, can block the motor response to noxious stimulation (immobility and analgesia) and suppress autonomic responsiveness, how it exerts these effects at the neuronal level in the spinal cord is not fully understood. Methods The effects of a clinically relevant concentration (1 rat minimum alveolar concentration [MAC]) of isoflurane on electrically evoked and spontaneous excitatory/inhibitory transmission and on the response to exogenous administration of the gamma-aminobutyric acid type A receptor agonist muscimol were examined in lamina II neurons of adult rat spinal cord slices using the whole cell patch clamp technique. The effect of isoflurane on the action potential-generating membrane property was also examined. Results Bath-applied isoflurane (1.5%, 1 rat MAC) diminished dorsal root-evoked polysynaptic but not monosynaptic excitatory postsynaptic currents. Glutamatergic miniature excitatory postsynaptic currents were also unaffected by isoflurane. In contrast, isoflurane prolonged the decay phase of evoked and miniature gamma-aminobutyric acid type A receptor-mediated inhibitory postsynaptic currents and increased the amplitude of the muscimol-induced current. Isoflurane had little effect on action potential discharge activity. Conclusions Isoflurane augments gamma-aminobutyric acid-mediated inhibitory transmission, leading to a decrease in the excitability of spinal dorsal horn neurons. This may be a possible mechanism for the antinociceptive effect of isoflurane in the spinal cord.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference50 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3