Cytochrome P-450 2B6 Is Responsible for Interindividual Variability of Propofol Hydroxylation by Human Liver Microsomes

Author:

Court Michael H.1,Duan Su X.2,Hesse Leah M.3,Venkatakrishnan Karthik3,Greenblatt David J.4

Affiliation:

1. Assistant Professor, Department of Pharmacology and Experimental Therapeutics, Tufts University, and Department of Clinical Sciences, School of Veterinary Medicine, North Grafton, Massachusetts.

2. Research Technician.

3. Graduate Student.

4. Professor and Chair, Department of Pharmacology and Experimental Therapeutics, Tufts University.

Abstract

Background Oxidation of propofol to 4-hydroxypropofol represents a significant pathway in the metabolism of this anesthetic agent in humans. The aim of this study was to identify the principal cytochrome P-450 (CYP) isoforms mediating this biotransformation. Methods Propofol hydroxylation activities and enzyme kinetics were determined using human liver microsomes and cDNA-expressed CYPs. CYP-specific marker activities and CYP2B6 protein content were also quantified in hepatic microsomes for correlational analyses. Finally, inhibitory antibodies were used to ascertain the relative contribution of CYPs to propofol hydroxylation by hepatic microsomes. Results Propofol hydroxylation by hepatic microsomes showed more than 19-fold variability and was most closely correlated to CYP2B6 protein content (r = 0.904), and the CYP2B6 marker activities, S-mephenytoin N-demethylation (r = 0.919) and bupropion hydroxylation (r = 0.854). High- and intermediate-activity livers demonstrated high-affinity enzyme kinetics (K(m) < 8 microm), whereas low-activity livers displayed low-affinity kinetics (K(m) > 80 microm). All of the CYPs evaluated were capable of hydroxylating propofol; however, CYP2B6 and CYP2C9 were most active. Kinetic analysis indicated that CYP2B6 is a high-affinity (K(m) = 10 +/- 2 microm; mean +/- SE of the estimate), high-capacity enzyme, whereas CYP2C9 is a low-affinity (K(m) = 41 +/- 8 microm), high-capacity enzyme. Furthermore, immunoinhibition showed a greater contribution of CYP2B6 (56 +/- 22% inhibition; mean +/- SD) compared with CYP2C isoforms (16 +/- 7% inhibition) to hepatic microsomal activity. Conclusions Cytochrome P-450 2B6, and to a lesser extent CYP2C9, contribute to the oxidative metabolism of propofol. However, CYP2B6 is the principal determinant of interindividual variability in the hydroxylation of this drug by human liver microsomes.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference36 articles.

Cited by 177 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3