Human Chest Wall Function while Awake and during Halothane Anesthesia

Author:

Warner David O.,Warner Mark A.,Ritman Erik L.

Abstract

Background Data concerning chest wall configuration and the activities of the major respiratory muscles that determine this configuration during anesthesia in humans are limited. The aim of this study was to determine the effects of halothane anesthesia on respiratory muscle activity and chest wall shape and motion during spontaneous breathing. Methods Six human subjects were studied while awake and during 1 MAC halothane anesthesia. Respiratory muscle activity was measured using fine-wire electromyography electrodes. Chest wall configuration was determined using images of the thorax obtained by three-dimensional fast computed tomography. Tidal changes in gas volume were measured by integrating respiratory gas flow, and the functional residual capacity was measured by a nitrogen dilution technique. Results While awake, ribcage expansion was responsible for 25 +/- 4% (mean +/- SE) of the total change in thoracic volume (delta Vth) during inspiration. Phasic inspiratory activity was regularly present in the diaphragm and parasternal intercostal muscles. Halothane anesthesia (1 MAC) abolished activity in the parasternal intercostal muscles and increased phasic expiratory activity in the abdominal muscles and lateral ribcage muscles. However, halothane did not significantly change the ribcage contribution to delta Vth (18 +/- 4%). Intrathoracic blood volume, measured by comparing changes in total thoracic volume and gas volume, increased significantly during inspiration both while awake and while anesthetized (by approximately 20% of delta Vth, P < 0.05). Halothane anesthesia significantly reduced the functional residual capacity (by 258 +/- 78 ml), primarily via an inward motion of the end-expiratory position of the ribcage. Although the diaphragm consistently changed shape, with a cephalad displacement of posterior regions and a caudad displacement of anterior regions, the diaphragm did not consistently contribute to the reduction in the functional residual capacity. Halothane anesthesia consistently increased the curvature of the thoracic spine measured in the saggital plane. Conclusions The authors conclude that (1) ribcage expansion is relatively well preserved during halothane anesthesia despite the loss of parasternal intercostal muscle activity; (2) an inward displacement of the ribcage accounts for most of the decrease in functional residual capacity caused by halothane anesthesia, accompanied by changes in diaphragm shape that may be related to motion of its insertions on the thoracoabdominal wall; and (3) changes in intrathoracic blood volume constitute a significant fraction of delta Vth during tidal breathing.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference58 articles.

Cited by 71 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3