Affiliation:
1. Assistant Professor, Department of Anesthesiology, University of Miami, Jackson Memorial Hospital, Miami, Florida.
2. Research Assistant.
3. Assistant Professor, Department of Anesthesia and Critical Care, Massachusetts General Hospital.
Abstract
Background
The hallmark of sickle cell disease (SCD) is erythrocyte sickling during deoxygenation of the abnormal hemoglobin S (HbS). When HbS is deoxygenated, it aggregates into polymers, resulting in distortion of the erythrocyte structure, producing microvascular thrombosis and ischemia. The transgenic SAD mouse produces three types of human hemoglobin: S, Antilles, and D-Punjab (HbSAD) and provides an animal model for SCD. We studied the effects of nitric oxide (NO) breathing at various doses and time regimens in the presence of severe hypoxia (6% oxygen) using the SAD mouse model.
Methods
Age- and sex-matched control and SAD mice were exposed to 6% oxygen breathing in an environmental chamber and assessed for survival up to 1 h. Animals received different inhaled NO concentrations before and/or during hypoxia. Blood was obtained to evaluate the oxyhemoglobin dissociation curve and measure methemoglobinemia.
Results
Pretreatment by breathing NO at 20 ppm by volume in air for 30 min, and continuing to breathe 20 ppm NO during hypoxia resulted in improvement in survival rates in the SAD mouse (75%, n = 8) as compared with control SAD mice (11%, n = 9; P < 0.001). Pretreatment alone or breathing lower doses of NO were not protective. Changes in HbSAD oxygen affinity were not detected with NO breathing, and methemoglobin levels were low in all surviving mice.
Conclusions
Breathing NO produced a rapid, protective effect to severe hypoxic stress in SAD mice. There appears to be a required loading period between NO breathing and its beneficial effect during hypoxic stress, possibly because of the total amount of NO delivered to SAD hemoglobin, blood cell components, and endothelium. NO breathing may be beneficial as a therapeutic intervention in SCD.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Anesthesiology and Pain Medicine
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献