Molecular Mechanisms Underlying Ketamine-mediated Inhibition of Sarcolemmal Adenosine Triphosphate-sensitive Potassium Channels

Author:

Kawano Takashi1,Oshita Shuzo2,Takahashi Akira3,Tsutsumi Yasuo1,Tanaka Katsuya4,Tomiyama Yoshinobu5,Kitahata Hiroshi3,Nakaya Yutaka6

Affiliation:

1. Resident.

2. Professor and Chairman.

3. Associate Professor.

4. Instructor, Department of Anesthesiology, Tokushima University School of Medicine, Tokushima, Japan.

5. Assistant Professor.

6. Professor and Chairman, Department of Nutrition, Tokushima University School of Medicine, Tokushima, Japan.

Abstract

Background Ketamine inhibits adenosine triphosphate-sensitive potassium (KATP) channels, which results in the blocking of ischemic preconditioning in the heart and inhibition of vasorelaxation induced by KATP channel openers. In the current study, the authors investigated the molecular mechanisms of ketamine's actions on sarcolemmal KATP channels that are reassociated by expressed subunits, inwardly rectifying potassium channels (Kir6.1 or Kir6.2) and sulfonylurea receptors (SUR1, SUR2A, or SUR2B). Methods The authors used inside-out patch clamp configurations to investigate the effects of ketamine on the activities of reassociated Kir6.0/SUR channels containing wild-type, mutant, or chimeric SURs expressed in COS-7 cells. Results Ketamine racemate inhibited the activities of the reassociated KATP channels in a SUR subtype-dependent manner: SUR2A/Kir6.2 (IC50 = 83 microM), SUR2B/Kir6.1 (IC50 = 77 microM), SUR2B/Kir6.2 (IC50 = 89 microM), and SUR1/Kir6.2 (IC50 = 1487 microM). S-(+)-ketamine was significantly less potent than ketamine racemate in blocking all types of reassociated KATP channels. The ketamine racemate and S-(+)-ketamine both inhibited channel currents of the truncated isoform of Kir6.2 (Kir6.2DeltaC36) with very low affinity. Application of 100 mum magnesium adenosine diphosphate significantly enhanced the inhibitory potency of ketamine racemate. The last transmembrane domain of SUR2 was essential for the full inhibitory effect of ketamine racemate. Conclusions These results suggest that ketamine-induced inhibition of sarcolemmal KATP channels is mediated by the SUR subunit. These inhibitory effects of ketamine exhibit specificity for cardiovascular KATP channels, at least some degree of stereoselectivity, and interaction with intracellular magnesium adenosine diphosphate.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference32 articles.

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3