Propofol Prevents Peroxide-induced Inhibition of Glutamate Transport in Cultured Astrocytes

Author:

Sitar Sandra M.,Hanifi-Moghaddam Pejman,Gelb Adrian,Cechetto David F.,Siushansian Ramin,Wilson John X.

Abstract

Background Glutamate transporters located in the plasma membrane of cerebral astrocytes take up excitatory neurotransmitters from the synaptic cleft. In diseases characterized by oxidative stress, the extracellular glutamate concentration increases and contributes to neuronal death. The authors wanted to determine whether propofol defends brain cells against oxidant-induced changes in their transport of glutamate. Methods Primary cultures of rat cerebral astrocytes were exposed to tert-butyl hydroperoxide (1 mM) to serve as an in vitro model of oxidative stress. Astrocytes were incubated with propofol for 2 h and tert-butyl hydroperoxide was added for the final hour. Alternatively, astrocytes were incubated with tert-butyl hydroperoxide for 30 min and then with propofol for another 30 min. Control cells received drug vehicle rather than propofol. The rate of uptake of glutamate, the efflux of the nonmetabolizable analog D-aspartate, and the intracellular concentration of the endogenous antioxidant glutathione were measured. Results Tert-butyl hydroperoxide decreased the glutathione concentration and inhibited glutamate uptake but had a negligible effect on D-aspartate efflux. At clinically relevant concentrations, propofol did not affect the glutathione concentration but did prevent the effect of tert-butyl hydroperoxide on glutamate transport. Furthermore, the addition of propofol after tert-butyl hydroperoxide reversed the inhibition of glutamate uptake. Conclusions Propofol prevents and reverses the inhibition of excitatory amino acid uptake in astrocytes exposed to tert-butyl hydroperoxide. The ability of propofol to defend against peroxide-induced inhibition of glutamate clearance may prevent the pathologic increase in extracellular glutamate at synapses, and thus delay or prevent the onset of excitotoxic neuronal death.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference45 articles.

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3