Queuing Theory Accurately Models the Need for Critical Care Resources

Author:

McManus Michael L.1,Long Michael C.2,Cooper Abbot3,Litvak Eugene4

Affiliation:

1. Department of Anesthesia and the Multidisciplinary Intensive Care Unit, Children’s Hospital Boston, and Associate Professor, Harvard Medical School.

2. Senior Anesthetist, Massachusetts General Hospital, and Adjunct Associate Professor, Boston University School of Management.

3. Senior Analyst.

4. Professor of Operations Management and Director, Boston University Health Policy Institute Program on Variability.

Abstract

Background Allocation of scarce resources presents an increasing challenge to hospital administrators and health policy makers. Intensive care units can present bottlenecks within busy hospitals, but their expansion is costly and difficult to gauge. Although mathematical tools have been suggested for determining the proper number of intensive care beds necessary to serve a given demand, the performance of such models has not been prospectively evaluated over significant periods. Methods The authors prospectively collected 2 years' admission, discharge, and turn-away data in a busy, urban intensive care unit. Using queuing theory, they then constructed a mathematical model of patient flow, compared predictions from the model to observed performance of the unit, and explored the sensitivity of the model to changes in unit size. Results The queuing model proved to be very accurate, with predicted admission turn-away rates correlating highly with those actually observed (correlation coefficient = 0.89). The model was useful in predicting both monthly responsiveness to changing demand (mean monthly difference between observed and predicted values, 0.4+/-2.3%; range, 0-13%) and the overall 2-yr turn-away rate for the unit (21%vs. 22%). Both in practice and in simulation, turn-away rates increased exponentially when utilization exceeded 80-85%. Sensitivity analysis using the model revealed rapid and severe degradation of system performance with even the small changes in bed availability that might result from sudden staffing shortages or admission of patients with very long stays. Conclusions The stochastic nature of patient flow may falsely lead health planners to underestimate resource needs in busy intensive care units. Although the nature of arrivals for intensive care deserves further study, when demand is random, queuing theory provides an accurate means of determining the appropriate supply of beds.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference25 articles.

Cited by 162 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3