Affiliation:
1. Department of Anesthesia and the Multidisciplinary Intensive Care Unit, Children’s Hospital Boston, and Associate Professor, Harvard Medical School.
2. Senior Anesthetist, Massachusetts General Hospital, and Adjunct Associate Professor, Boston University School of Management.
3. Senior Analyst.
4. Professor of Operations Management and Director, Boston University Health Policy Institute Program on Variability.
Abstract
Background
Allocation of scarce resources presents an increasing challenge to hospital administrators and health policy makers. Intensive care units can present bottlenecks within busy hospitals, but their expansion is costly and difficult to gauge. Although mathematical tools have been suggested for determining the proper number of intensive care beds necessary to serve a given demand, the performance of such models has not been prospectively evaluated over significant periods.
Methods
The authors prospectively collected 2 years' admission, discharge, and turn-away data in a busy, urban intensive care unit. Using queuing theory, they then constructed a mathematical model of patient flow, compared predictions from the model to observed performance of the unit, and explored the sensitivity of the model to changes in unit size.
Results
The queuing model proved to be very accurate, with predicted admission turn-away rates correlating highly with those actually observed (correlation coefficient = 0.89). The model was useful in predicting both monthly responsiveness to changing demand (mean monthly difference between observed and predicted values, 0.4+/-2.3%; range, 0-13%) and the overall 2-yr turn-away rate for the unit (21%vs. 22%). Both in practice and in simulation, turn-away rates increased exponentially when utilization exceeded 80-85%. Sensitivity analysis using the model revealed rapid and severe degradation of system performance with even the small changes in bed availability that might result from sudden staffing shortages or admission of patients with very long stays.
Conclusions
The stochastic nature of patient flow may falsely lead health planners to underestimate resource needs in busy intensive care units. Although the nature of arrivals for intensive care deserves further study, when demand is random, queuing theory provides an accurate means of determining the appropriate supply of beds.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Anesthesiology and Pain Medicine
Cited by
162 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献