Blockade and Activation of the Human Neuronal Nicotinic Acetylcholine Receptors by Atracurium and Laudanosine

Author:

Chiodini Florence1,Charpantier Eric1,Muller Dominique1,Tassonyi Edomer1,Fuchs-Buder Thomas1,Bertrand Daniel1

Affiliation:

1. * Researcher Fellow, † Postdoctoral Fellow, # Professor of Physiology, Department of Physiology, ‡ Professor, Division of Neuropharmacology, Geneva Medical Centre. § Associate Professor, ∥ Chief Resident, Division of Anaesthesiology, Geneva University Hospitals, Division of Anaesthesiology Geneva University Hospitals. ∥ Current position: Klinik für Anaesthesiologie und Intensive Medicin, Universi

Abstract

Background Curaremimetic nondepolarizing muscle relaxants are widely used in clinical practice to prevent muscle contraction either during surgery or during intensive care. Although primarily acting at the neuromuscular junction, these compounds can cause adverse effects, including modification of cardiac rhythm, arterial blood pressure, and in the worst cases, triggering of seizures. In this study, we assessed the interaction of atracurium and its metabolite, laudanosine, with neuronal nicotinic receptors. Methods The human neuronal nicotinic receptors alpha4beta2, alpha3beta4, alpha3alpha5beta4, and alpha7 are heterologously expressed in Xenopus laevis oocytes, and the effect of atracurium and its degradation product, laudanosine, were studied on these receptors. Results Atracurium and laudanosine inhibited in the micromolar range the major brain alpha4beta2 receptor and the ganglionic alpha3beta4 or alpha3beta4alpha5 and the homomeric alpha7 receptors. For all four receptors, inhibition was rapid and readily reversible within less than 1 min. Atracurium blockade was competitive at alpha4beta2 and alpha7 receptors but displayed a noncompetitive blockade at the alpha3beta4 receptors. Inhibition at this receptor subtype was not modified by alpha5. Laudanosine was found to have a dual mode of action; first, it competes with acetylcholine and, second, it blocks the ionic pore by steric hindrance. At low concentrations, these two drugs are able to activate both the alpha4beta2 and the alpha3beta4 receptors. Conclusion Adverse effects observed during atracurium administration may be attributed, at least partly, to an interaction with neuronal nicotinic receptors.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference40 articles.

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3