Thiopental Inhibits the Activation of Nuclear Factor κB

Author:

Loop Torsten1,Liu Zhiheng2,Humar Matjaz3,Hoetzel Alexander4,Benzing Albert5,Pahl Heike L.6,Geiger Klaus K.7,J. Pannen Benedikt H.5

Affiliation:

1. Staff Anesthesiologist.

2. Research Fellow.

3. Biologist and Postdoctoral Fellow.

4. Resident.

5. Associate Professor.

6. Professor, Department of Experimental Anesthesiology.

7. Professor and Chairman, Department of Anesthesiology and Critical Care Medicine.

Abstract

Background Thiopental is frequently used for the treatment of intracranial hypertension after severe head injury. Its long-term administration increases the incidence of nosocomial infections, which contributes to the high mortality rate of these patients. However, the mechanism of its immunosuppressing effect remains unknown. Methods The effect of thiopental (200-1000 microg/ml) on the activation of the nuclear transcription factor kappaB (NF-kappaB; electrophoretic mobility shift assays), on NF-kappaB-driven reporter gene activity (transient transfection assays), on the expression of NF-kappaB target genes (enzyme-linked immunoassays), on T-cell activation (flow cytometric analyses of CD69 expression), and on the content of the NF-kappaB inhibitor IkappaB-alpha (Western blotting) was studied in human T lymphocytes in vitro. Results Thiopental inhibited the activation of the transcription factor NF-kappaB but did not alter the activity of the cyclic adenosine monophosphate response element binding protein. Other barbiturates (methohexital), anesthetics (etomidate, propofol, ketamine), or opioids (fentanyl, morphine) did not affect NF-kappaB activation. Thiopental-mediated suppression of NF-kappaB could be observed in Jurkat cells and in primary CD3+ lymphocytes from healthy volunteers, was time- and concentration-dependent, occurred at concentrations that are clinically achieved, and persisted for hours after the incubation. It was associated with an inhibition of NF-kappaB-driven reporter gene activity, of the expression of interleukin-2, -6, and -8, and interferon gamma, and of the activation of CD3+ lymphocytes. Suppression of NF-kappaB appeared to involve reduced degradation of IkappaB-alpha. Conclusion The results demonstrate that thiopental inhibits the activation of NF-kappaB and may thus provide a molecular mechanism for some of the immunosuppressing effects associated with thiopental therapy.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference45 articles.

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3