Negative and Positive Inotropic Effects of Propofol via  L-type Calcium Channels and the Sodium-Calcium Exchanger in Rat Cardiac Trabeculae

Author:

de Ruijter Wouter1,M. Stienen Ger J.2,van Klarenbosch Jan3,de Lange Jacob J.4

Affiliation:

1. Research Fellow.

2. Associate Professor, Laboratory for Physiology.

3. Instructor and Staff Anesthesiologist.

4. Professor, Department of Anesthesiology.

Abstract

Background Conflicting opinions are present in the literature regarding the origin of the negative inotropic effect of propofol on the myocardium. This study aims to resolve these discrepancies by investigating the inotropic effects of propofol the L-type calcium channels and the sodium-calcium exchanger (NCX). Methods The effect of 20 microg/ml propofol on force development was determined in rat cardiac trabeculae at different pacing frequencies and different extracellular calcium concentrations. Postrest potentiation, sodium withdrawal during quiescence, and the NCX inhibitor KB-R7943 were used to study changes in the activity of the reverse mode of the NCX by propofol. Results The effect of propofol on steady state peak force depended on pacing frequency and calcium concentration. A negative inotropic effect was observed at pacing frequencies greater than 0.5 Hz, but a positive inotropic effect was observed at 0.1 Hz and low calcium, which cannot be explained by an effect on the L-type calcium channel. Propofol enhanced postrest potentiation in a calcium-dependent manner. Sodium withdrawal during quiescence and the use of the specific NCX inhibitor KB-R7943 provided evidence for an enhancement of calcium influx by propofol the reverse mode of the NCX. Conclusions The effects of propofol on the myocardium depend on pacing frequency and calcium concentration. The positive inotropic effect of propofol is associated with increased calcium influx the reverse mode of the NCX. The authors conclude that the net inotropic effect of propofol is the result of its counteracting influence on the functioning of the L-type calcium channel and the NCX.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference43 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3