Biphasic Effects of Isoflurane on the Cardiac Action Potential

Author:

Suzuki Akihiro1,Aizawa Kei1,Gassmayr Susanne1,Bosnjak Zeljko J.2,Kwok Wai-Meng3

Affiliation:

1. Research Fellow, Department of Anesthesiology.

2. Professor, Departments of Anesthesiology and Physiology.

3. Assistant Professor, Departments of Anesthesiology, and Pharmacology and Toxicology.

Abstract

Background The mechanism underlying isoflurane modulation of cardiac electrophysiology is not well understood. In the present study, the authors investigated the effects of isoflurane on the cardiac action potential (AP) characteristics. The results were correlated to modulation of the L-type calcium (I(Ca,L)), the delayed-rectifier potassium (I(Kdr)), and the inward-rectifier potassium (I(Kir)) currents. Methods Single ventricular myocytes were enzymatically isolated from guinea pig hearts. The current clamp and whole cell voltage clamp configurations of the patch clamp technique were used to monitor the cardiac AP and ionic currents, respectively. A dynamic AP voltage protocol that mimicked changes in membrane potential during an AP was used to monitor the I(Ca,L), I(Kdr) and I(Kir). Results Isoflurane produced a concentration-dependent, biphasic effect on the AP duration (APD). At 0.6 mm (1.26 vol%), isoflurane significantly increased APD50 and APD90 by 50.0 +/- 7.6% and 48.9 +/- 7.2%, respectively (P < 0.05; n = 6). At 1.0 mm (2.09 vol%), isoflurane had no significant effect on APD (n = 6). In contrast, at 1.8 mm (3.77 vol%), isoflurane decreased APD50 and APD90 by 38.3 +/- 5.4% and 32.2 +/- 5.5%, respectively (P < 0.05; n = 7). The inhibitory effects of isoflurane on I(Kdr) chord conductance were greater than those on I(Ca,L) (P < 0.05; n = 6/group). Both I(Ca,L) inactivation and I(Kdr) activation kinetics were accelerated by isoflurane. Isoflurane had no significant effects on I(Kir) chord conductance (n = 6). Conclusion At the lower anesthetic concentration, the prolongation of the APD may be the result of the dominant inhibitory effects of isoflurane on I(Kdr). At the higher concentration, the shortening of the APD may be caused by the inhibitory effects on I (Ca,L) combined with the isoflurane-induced acceleration of I(Ca,L) inactivation kinetics. Because I(Kdr) is significantly inhibited by isoflurane, I(Kir) appears to be the major repolarizing current, which is minimally affected by isoflurane.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference34 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3