Effects of Propofol on Calcium sup 2+ Regulation by Malignant Hyperthermia-susceptible Muscle Membranes

Author:

Fruen Bradley R.,Mickelson James R.,Roghair Timothy J.,Litterer Lynn A.,Louis Charles F.

Abstract

Background The effects of inhalation anesthetics on Ca2+ regulation in malignant hyperthermia-susceptible skeletal muscle are considered to be responsible for triggering malignant hyperthermia. The intravenous anesthetic propofol does not trigger malignant hyperthermia in susceptible patients or experimental animals, suggesting that there are important differences between the effects of propofol and the effects of inhalation anesthetics on Ca2+ regulation in malignant hyperthermia-susceptible muscle. Understanding these differences may help to clarify the mechanisms responsible for triggering malignant hyperthermia. Methods To investigate the effects of propofol on Ca2+ regulation by malignant hyperthermia-susceptible skeletal muscle, we determined its effects on the membrane channels and pumps that control myoplasmic Ca2+ concentrations: the sarcoplasmic reticulum ryanodine receptor, the transverse tubule dihydropyridine receptor, and the sarcoplasmic reticulum Ca(2+)-adenosine triphosphatase (Ca(2+)-ATPase). Terminal cisternae-derived sarcoplasmic reticulum vesicles enriched in the junctional proteins of the sarcoplasmic reticulum and the transverse tubule membranes were isolated from the muscle of malignant hyperthermia-susceptible and normal pigs. Ca2+ flux, Ca(2+)-ATPase, and ligand binding measurements on these isolated vesicle preparations were performed in the presence of varying propofol concentrations. Results Propofol (10-500 microM) had no effect on ryanodine receptor-mediated Ca2+ efflux from muscle membrane vesicles. Propofol (1-100 microM) also had no effect on sarcoplasmic reticulum vesicle [3H]ryanodine binding, whereas higher concentrations (200-300 microM) slightly inhibited [3H]ryanodine binding. Binding of the dihydropyridine receptor Ca2+ channel blocker [3H]PN200-110 to these preparations was inhibited by propofol (10-300 microM). Ca(2+)-ATPase activity was stimulated by 10-100 microM propofol but was inhibited by higher concentrations. In all cases, the effects of propofol on malignant hyperthermia-susceptible and normal membrane preparations were similar. Conclusions In contrast to malignant hyperthermia-triggering inhalation anesthetics, propofol does not stimulate malignant hyperthermia-susceptible or normal ryanodine receptor channel activity, even at > 100 times clinical concentrations. Effects on dihydropyridine receptor and Ca(2+)-ATPase function, however, are similar to the effects of inhalation anesthestics and require much lower concentrations of propofol. These findings, demonstrating that propofol does not activate ryanodine receptor Ca2+ channels, suggest a plausible explanation for why propofol does not trigger malignant hyperthermia in susceptible persons.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference38 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3