Nitrogen Dioxide Production during Mechanical Ventilation with Nitric Oxide in Adults

Author:

Nishimura Masaji,Hess Dean,Kacmarek Robert M.,Ritz Ray,Hurford William E.

Abstract

Background Inhaled nitric oxide (NO) may be useful in the treatment of adult respiratory distress syndrome and other diseases characterized by pulmonary hypertension and hypoxemia. NO is rapidly converted to nitrogen dioxide (NO2) in oxygen (O2) environments. We hypothesized that in patients whose lungs are mechanically ventilated and in those with a long residence time for NO in the lungs, a clinically important [NO2] may be present. We therefore determined the rate constants for NO conversion in adult mechanical ventilators and in a test lung simulating prolonged intrapulmonary residence of NO. Methods NO (800 ppm) was blended with nitrogen (N2), delivered to the high-pressure air inlet of a Puritan-Bennett 7200ae or Siemens Servo 900C ventilator, and used to ventilate a test lung. The ventilator settings were varied: minute ventilation (VE) from 5 to 25 l/min, inspired O2 fraction (FIO2) from 0.24 to 0.87, and [NO] from 10 to 80 ppm. The experiment was then repeated with air instead of N2 as the dilution gas. The effect of pulmonary residence time on NO2 production was examined at test lung volumes of 0.5-4.0 l, VE of 5-25 l/min, FIO2 of 0.24-0.87, and [NO] of 10-80 ppm. The inspiratory gas mixture was sampled 20 cm from the Y-piece and from within the test lung. NO and NO2 were measured by chemiluminescence. The rate constant (k) for the conversion of NO to NO2 was determined from the relation 1/[NO]t-1/[NO]o = k x [O2] x t, where t = residence time. Results No NO2 was detected during any trial with VE 20 or 25 l/min. With N2 dilution and the Puritan-Bennett 7200ae, NO2 (< or = 1 ppm) was detected only at a VE of 5 l/min with an FIO2 of 0.87 and [NO] > or = 70 ppm. In contrast, [NO2] values were greater with the Servo 900C ventilator than with the Puritan-Bennett 7200ae at similar settings. When NO was diluted with air, clinically important [NO2] values were measured with both ventilators at high [NO] and FIO2. Rate constants were 1.46 x 10(-9) ppm-2.min-1 when NO was mixed with N2, 1.17 x 10(-8) ppm-2.min-1 when NO was blended with air, and 1.44 x 10(-9) ppm-2.min-1 in the test lung. Conclusions [NO2] increased with increased FIO2 and [NO], decreased VE, blending with air, and increased lung volumes. Higher [NO2] was produced with the Servo 900C ventilator than the Puritan-Bennett 7200ae because of the greater residence time. With long intrapulmonary residence times for NO, there is a potential for NO2 production within the lungs. The rate constants determined can be used to estimate [NO2] in adult mechanical ventilation systems.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference32 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3