Cardiopulmonary Bypass Induces Neurologic and Neurocognitive Dysfunction in the Rat

Author:

Mackensen G. Burkhard1,Sato Yukie2,Nellgård Bengt2,Pineda Jose3,Newman Mark F.4,Warner David S.4,Grocott Hilary P.5

Affiliation:

1. Associate, Klinik für Anaesthesiologie, Technische Universität München, München, Germany.

2. Research Associate.

3. Fellow, Department of Pediatrics, Duke University Medical Center.

4. Professor.

5. Assistant Professor, Department of Anesthesiology.

Abstract

Background Neurocognitive dysfunction is a common complication of cardiac surgery using cardiopulmonary bypass (CPB). Elucidating injury mechanisms and developing neuroprotective strategies have been hampered by the lack of a suitable long-term recovery model of CPB. The purpose of this study was to investigate neurologic and neurocognitive outcome after CPB in a recovery model of CPB in the rat. Methods Fasted rats (n = 10) were subjected to 60 min of normothermic (37.5 degrees C) nonpulsatile CPB using a roller pump and a membrane oxygenator. Sham-operated controls (n = 10) were not subjected to CPB. Neurologic outcome was assessed on days 1, 3, and 12 after CPB using standardized functional testing. Neurocognitive outcome, defined as the time (or latency) to finding a submerged platform in a Morris water maze (an indicator of visual-spatial learning and memory), was evaluated daily from post-CPB days 3-12. Histologic injury in the hippocampus was also evaluated. Results Neurologic outcome was worse in the CPB versus the sham-operated controls at all three measurement intervals (P < 0.001). The CPB group also had longer water maze latencies compared with the sham-operated controls (P = 0.004), indicating significant neurocognitive dysfunction after CPB. No difference in histologic injury between groups was observed. Conclusions CPB caused both neurologic and neurocognitive impairment in a rodent recovery model. This model could potentially facilitate the investigation of CPB-related injury mechanisms and possible neuroprotective interventions.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference45 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3