Widespread Inhibition of Sodium Channel–dependent Glutamate Release from Isolated Nerve Terminals by Isoflurane and Propofol

Author:

Lingamaneni Ratnakumari1,Birch Martin L.2,Hemmings Hugh C.3

Affiliation:

1. Instructor.

2. Medical Student.

3. Professor and Vice Chair of Research and Associate Professor of Pharmacology.

Abstract

Background Controversy persists concerning the mechanisms and role of general anesthetic inhibition of glutamate release from nerve endings. To determine the generality of this effect and to control for methodologic differences between previous studies, the authors analyzed the presynaptic effects of isoflurane and propofol on glutamate release from nerve terminals isolated from several species and brain regions. Methods Synaptosomes were prepared from rat, mouse, or guinea pig cerebral cortex and also from rat striatum and hippocampus. Release of endogenous glutamate evoked by depolarization with 20 microm veratridine (which opens voltage-dependent Na+ channels by preventing inactivation) or by 30 mm KCl (which activates voltage-gated Ca2+ channels by membrane depolarization) was monitored using an on-line enzyme-linked fluorometric assay. Results Glutamate release evoked by depolarization with increased extracellular KCl was not significantly inhibited by isoflurane up to 0.7 mM ( approximately 2 minimum alveolar concentration; drug concentration for half-maximal inhibition [IC50] > 1.5 mM) [corrected] or propofol up to 40 microm in synaptosomes prepared from rat, mouse, or guinea pig cerebral cortex, rat hippocampus, or rat striatum. Lower concentrations of isoflurane or propofol significantly inhibited veratridine-evoked glutamate release in all three species (isoflurane IC50 = 0.41-0.50 mm; propofol IC50 = 11-18 microm) and rat brain regions. Glutamate release was evoked by veratridine or increased KCl (from 5 to 35 mM) to assess the involvement of presynaptic ion channels as targets for drug actions [corrected]. Conclusions Isoflurane and propofol inhibited Na+ channel-mediated glutamate release evoked by veratridine with greater potency than release evoked by increased KCl in synaptosomes prepared from three mammalian species and three rat brain regions. These findings are consistent with a greater sensitivity to anesthetics of presynaptic Na+ channels than of Ca2+ channels coupled to glutamate release. This widespread presynaptic action of general anesthetics is not mediated by potentiation of gamma-aminobutyric acid type A receptors, though additional mechanisms may be involved.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference49 articles.

Cited by 93 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3