Anesthetic Effects on Mitochondrial ATP-sensitive K Channel

Author:

Kohro Shinji1,Hogan Quinn H.2,Nakae Yuri1,Yamakage Michiaki3,Bosnjak Zeljko J.4

Affiliation:

1. Research Fellow.

2. Associate Professor, Department of Anesthesiology Research.

3. Assistant Professor, Department of Anesthesiology, Sapporo Medical University, Sapporo, Japan.

4. Professor, Departments of Anesthesiology and Physiology, Medical College of Wisconsin.

Abstract

Background Volatile anesthetics show an ischemic preconditioning-like cardioprotective effect, whereas intravenous anesthetics have cardioprotective effects for ischemic-reperfusion injury. Although recent evidence suggests that mitochondrial adenosine triphosphate-regulated potassium (mitoK(ATP)) channels are important in cardiac preconditioning, the effect of anesthetics on mitoK(ATP) is unexplored. Therefore, the authors tested the hypothesis that anesthetics act on the mitoK(ATP) channel and mitochondrial flavoprotein oxidation. Methods Myocardial cells were isolated from adult guinea pigs. Endogenous mitochondrial flavoprotein fluorescence, an indicator of mitochondrial flavoprotein oxidation, was monitored with fluorescence microscopy while myocytes were exposed individually for 15 min to isoflurane, sevoflurane, propofol, and pentobarbital. The authors further investigated the effect of 5-hydroxydeanoate, a specific mitoK(ATP) channel antagonist, on isoflurane- and sevoflurane-induced flavoprotein oxidation. Additionally, the effects of propofol and pentobarbital on isoflurane-induced flavoprotein oxidation were measured. Results Isoflurane and sevoflurane induced dose-dependent increases in flavoprotein oxidation (isoflurane: R2 = 0.71, n = 50; sevoflurane: R2 = 0.86, n = 20). The fluorescence increase produced by both isoflurane and sevoflurane was eliminated by 5-hydroxydeanoate. Although propofol and pentobarbital showed no significant effects on flavoprotein oxidation, they both dose-dependently inhibited isoflurane-induced flavoprotein oxidation. Conclusions Inhalational anesthetics induce flavoprotein oxidation through opening of the mitoK(ATP) channel. This may be an important mechanism contributing to anesthetic-induced preconditioning. Cardioprotective effects of intravenous anesthetics may not be dependent on flavoprotein oxidation, but the administration of propofol or pentobarbital may potentially inhibit the cardioprotective effect of inhalational anesthetics.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference32 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3