Thermoregulatory Vasoconstriction Does Not Impede Core Warming during Cutaneous Heating

Author:

Clough David,Kurz Andrea,Sessler Daniel I.,Christensen Richard,Xiong Junyu

Abstract

Background Although forced-air warming rapidly increases intraoperative core temperatures, it is reportedly ineffective postoperatively. A major difference between these two periods is that arteriovenous shunts are usually dilated during surgery, whereas vasoconstriction is uniform in hypothermic postoperative patients. Vasoconstriction may decrease efficacy of warming because its major physiologic purposes are to reduce cutaneous heat transfer and restrict heat transfer between the two thermal compartments. Accordingly, we tested the hypothesis that thermoregulatory vasoconstriction decreases cutaneous transfer of applied heat and restricts peripheral-to-core flow of heat, thereby delaying and reducing the increase in core temperature. Methods Eight healthy male volunteers anesthetized with propofol and isoflurane were studied. Volunteers were allowed to cool passively until core temperature reached 33 degrees C. On one randomly assigned day, the isoflurane concentration was reduced, to provoke thermoregulatory arteriovenous shunt vasoconstriction; on the other study day, a sufficient amount of isoflurane was administered to prevent vasoconstriction. On each day, forced-air warming was then applied for 2 h. Peripheral (arm and leg) tissue heat contents were determined from 19 intramuscular needle thermocouples, 10 skin temperatures, and "deep" foot temperature. Core (trunk and head) heat content was determined from core temperature, assuming a uniform compartmental distribution. Time-dependent changes in peripheral and core tissue heat contents were evaluated using linear regression. Differences between the vasoconstriction and vasodilation study days, and between the peripheral and core compartments, were evaluated using two-tailed, paired t tests. Data are presented as means +/-SD; P < 0.01 was considered statistically significant. Results Cutaneous heat transfer was similar during vasoconstriction and vasodilation. Forced-air warming increased peripheral tissue heat content comparably when the volunteers were vasodilated and vasoconstricted: 48 +/- 7 versus 53 +/- 10 kcal/h. Core compartment tissue heat content increased similarly when the volunteers were vasodilated and vasoconstricted: 51 +/- 8 versus 44 +/- 11 kcal/h. Combining the two study days, the increase in peripheral and core heat contents did not differ significantly: 51 +/- 8 versus 48 +/- 10 kcal/h, respectively. Core temperature increased at essentially the same rate when the volunteers remained vasodilated (1.3 degrees C/h) as when they were vasoconstricted (1.2 degrees C/h). Conclusions The authors failed to confirm their hypothesis that thermoregulatory vasoconstriction decreases cutaneous transfer of applied heat and restricts peripheral-to-core flow of heat in anesthetized subjects. The reported difference between intraoperative and postoperative rewarming efficacy may result from nonthermoregulatory anesthetic-induced vasodilation.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference37 articles.

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3