Dantrolene Sodium Can Increase or Attenuate Activity of Skeletal Muscle Ryanodine Receptor Calcium Release Channel

Author:

Nelson Thomas E.,Lin Marina,Zapata-Sudo Gisele,Sudo Roberto Takashi

Abstract

Background Dantrolene sodium (DS) is a direct-acting skeletal muscle relaxant whose only known action is to block calcium release from intracellular storage sites. The exact site of action for DS is unknown, but its efficacy in treating and preventing anesthetic-induced malignant hyperthermia (MH) is well established. Methods Single ryanodine (Ry1) receptor calcium release channels were incorporated into a planar lipid bilayer for electrophysiologic recording and for subsequent analysis of the channel's gating and conductance properties. The cellular effects of low DS concentrations were investigated by isometric contracture tension responses in biopsied MH human and dog muscle fascicles and in normal, single fibers from human vastus lateralis muscle. Results Two concentration-dependent DS effects on the isolated Ry1 receptor were discovered, suggesting at least two different binding sites. At nanomolar concentrations, DS activated the channel by causing three-to fivefold increases in open-state probability and dwell times. At micromolar concentrations, DS first increased then reduced activity in the channels; with the dominant effect being reduced activity. A 20 nm concentration of DS produced significant contracture tension in human muscle from one MH subject and caused potentiation of twitch in muscle from another MH patient. Halothane contracture in MH dog muscle was followed by an additional increase in tension when treated with 20 nm DS. Other investigations on chemically skinned, human fibers showed that calcium loaded in the sarcoplasmic reticulum was partially released by nM DS. Conclusions The study results suggest that at least two binding sites for DS exist on the Ry1 receptor calcium channel. A low-affinity (microM) site is associated with reduced channel gating and open-state dwell time and may relate to the established pharmacologic muscle relaxant effect of DS. The proposed high-affinity (nM) DS binding site activates the channel, producing Ca2+ release to the myoplasm, which, under environmentally adverse conditions, could damage genetically predisposed MH muscle. Such a phenomenon, if it occurs in DS treated MH patients, could generate a recrudescence of the syndrome.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference27 articles.

Cited by 70 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Heat stroke in dogs: Literature review;Veterinární medicína;2022-07-15

2. Retrospective analysis of hops toxicosis in dogs (2002‐2014): 71 cases;Journal of Veterinary Emergency and Critical Care;2021-09-09

3. Maligne Hyperthermie: pharmakologische Therapie – Update 2019;AINS - Anästhesiologie · Intensivmedizin · Notfallmedizin · Schmerztherapie;2019-09

4. 4TM-TRPM8 channels are new gatekeepers of the ER-mitochondria Ca2+ transfer;Biochimica et Biophysica Acta (BBA) - Molecular Cell Research;2018-07

5. Organelle membrane derived patches: reshaping classical methods for new targets;Scientific Reports;2017-10-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3