Variability in the Magnitude of the Cerebral Blood Flow Response and the Shape of the Cerebral Blood Flow: Pressure Autoregulation Curve during Hypotension in Normal Rats

Author:

Jones Stephen C.1,Radinsky Carol R.2,Furlan Anthony J.3,Chyatte Douglas4,Qu Yinsheng5,Easley Kirk A.6,Perez-Trepichio Alejandro D.7

Affiliation:

1. Professor of Anesthesiology, Department of Anesthesiology, Allegheny General Hospital, MCP Hahnemann University School of Medicine, Pittsburgh PA.

2. Veterinary Student, Ross University School of Veterinary Medicine, Basseterre, St. Kitts, West Indies.

3. Staff Neurologist, Department of Neurology, Cleveland Clinic Foundation, Cleveland Ohio.

4. Professor and Chief, Division of Cerebrovascular Diseases, MCP Hahnemann University School of Medicine, Philadelphia PA.

5. Senior Staff Scientist, Cancer Prevention Research Program, Fred Hutchinson Cancer Research Center, Seattle WA.

6. Senior Associate, Department of Biostatistics, Emory University, Atlanta Georgia.

7. Medical Resident, Department of Internal Medicine, Cleveland Clinic Florida, Weston Florida.

Abstract

Background The maintenance of constant cerebral blood flow (CBF) as mean cerebral perfusion pressure (CPP) varies is commonly referred to as CBF-pressure autoregulation. The lower limit of autoregulation is the CPP at which the vasodilatory capacity is exhausted and flow falls with pressure. We evaluated variability in the magnitude of percent change in CBF during the hypotensive portion of the autoregulatory curve. We hypothesize that this variability, in normal animals, obeys a Gaussian distribution and characterizes a vasodilatory mechanism that is inherently different from that described by the lower limit. Methods Sixty-five male Sprague-Dawley rats were anesthetized with 0.5-1% halothane and 70% nitrous oxide in oxygen. Body temperature was maintained at 37 degrees C. Using a closed, superfused cranial window, CBF (as % of control) was determined using laser Doppler flowmetry (LDF) through the window with the intracranial pressure set at 10 mmHg. Animals with low vascular reactivity to inhaled carbon dioxide and superfused adenosine diphosphate (ADP) or acetylcholine were excluded. MABP was sequentially lowered by exsanguination to 100, 85, 70, 55, and 40 mmHg. Using the %CBF versus CPP plots for each curve (1) the lower limit of autoregulation was identified; (2) the pattern of autoregulation was classified as "peak" (a rise in LDF flow of at least 15% as arterial pressure was dropped), "classic" (plateau with a fall), or "none" (a fall in LDF flow of greater than 15%); (3) the area under the autoregulatory curve between CPPs of 30 and 90 mmHg was calculated; and (4) the magnitude of the %CBF response to hypotension was assessed by determining the %CBF at a CPP of 60 mmHg (%CBFCPP60). Results Of the 65 curves, 21 had the peak pattern, 33 the classic pattern, and 11 the none pattern. The %CBFCPP60 and autoregulatory area displayed Gaussian distributions, consistent with normal variability. Although %CBFCPP60, autoregulatory area, and pattern were significantly correlated (r or rho > 0.84, P < 0.001), the lower limit correlated weakly with autoregulatory area (r = 0.34, P = 0.012), and not at all with autoregulatory pattern or %CBFCPP60. Conclusions The %CBFCPP60 measures an aspect of the autoregulatory curve that is distinct from the lower limit. The peak autoregulatory pattern indicates that vessels are dilating more than is necessary to maintain a plateau in response to the pressure decrease, whereas the none pattern existed in spite of acceptable vascular responses to inhaled carbon dioxide and superfused ADP or ACh and the lack of surgical trauma. These results provide a different view of autoregulation during hypotension, are most likely dependent on the highly regional CBF method used, and could have implications concerning potential cerebral ischemia and hypotension during anesthesia.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference50 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3