Flow-induced Dilation of Rat Coronary Microvessels Is Attenuated by Isoflurane but Enhanced by Halothane

Author:

Park Kyung W.,Dai Hai B.,Lowenstein Edward,Sellke Frank W.

Abstract

Background Volatile anesthetics attenuate agonist-induced endothelium-dependent vasodilation of coronary arteries. This study considered the hypothesis that the anesthetics may also attenuate flow-induced endothelium-dependent vasodilation. Methods Rat subepicardial arteries of approximately 100 microm were monitored for diameter changes in vitro by a video detection system, with the midpoint luminal pressure held constant at 40 mmHg but the pressure gradient (and therefore flow) across each vessel increased from 0 to 80 mmHg, in the presence or absence of 1 or 2 minimum alveolar concentration (MAC) isoflurane or 1 or 2 MAC halothane, with or without 10 microM of the nitric oxide (NO) synthase inhibitor NG-nitro-L-arginine (L-NNA) or 10 microM of the cyclooxygenase inhibitor indomethacin. Results Flow-induced dilation was attenuated by L-NNA or indomethacin (p < 0.001 each). It was attenuated by isoflurane in a concentration-dependent manner (P < 0.001). Attenuation by 2 MAC isoflurane persisted even in the presence of L-NNA (P < 0.01) or indomethacin (P < 0.05). On the other hand, flow-induced dilation was enhanced by 2 MAC halothane (P < 0.05). Halothane at 1 MAC had no significant effect. Enhancement by 2 MAC halothane was evident in the presence of indomethacin (P < 0.05) but not L-NNA (P = 0.40). Conclusions In rat subepicardial arteries, flow-induced dilation is endothelium-dependent and mediated by both NO and a prostanoid. Isoflurane attenuates flow-induced dilation, possibly by decreasing synthesis, the action of NO and a prostanoid, or both, whereas halothane enhances it, possibly by increasing synthesis, the action of NO, or both.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference45 articles.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3