Differential Block of Fast and Slow Inactivating Tetrodotoxin-sensitive Sodium Channels by Droperidol in Spinal Dorsal Horn Neurons

Author:

Olschewski Andrea1,Bräu Michael E.1,Hempelmann Gunter2,Vogel Werner3,Safronov Boris V.4

Affiliation:

1. Anesthesiologist.

2. Professor and Chair of Anesthesia.

3. Professor of Physiology.

4. Physiologist.

Abstract

Background Dorsal horn neurons of the spinal cord participate in neuronal pain transmission. During spinal and epidural anesthesia, dorsal horn neurons are exposed to local anesthetics and opioids. Droperidol is usually given with opioids to avoid nausea and vomiting. A recently developed method of "entire soma isolation" has made it possible to study directly the action of droperidol on different components of Na+ current in dorsal horn neurons. Methods Using a combination of the whole-cell patch-clamp recording from spinal cord slices and the entire soma isolation method, we studied the direct action of droperidol on two types of Na+ currents in dorsal horn neurons of young rats. Results The tetrodotoxin-sensitive Na+ current in isolated somata consisted of a fast inactivating (tauF, 0.5-2 ms; 80-90% of the total amplitude) and a slow inactivating (tauS, 6-20 ms; 10-20% of the total amplitude) component. Droperidol, at concentrations relevant for spinal and epidural anesthesia, selectively and reversibly suppressed the fast component with a half-maximum inhibiting concentration (IC50) of 8.3 microm. The slow inactivating component was much less sensitive to droperidol; the estimated IC50 value was 809 microm. Conclusions Droperidol selectively blocks fast Na+ channels, the fast and slow components of the Na+ current in dorsal horn neurons are carried through pharmacologically distinct types of Na+ channels, and the effects of droperidol differ from those of local anesthetics and tetrodotoxin, which equipotently suppress both components. Droperidol may be suggested as a pharmacologic tool for separation of different types of inactivating tetrodotoxin-sensitive Na+ channel.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference23 articles.

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3