Evidence for the Involvement of Spinal Cord α1Adrenoceptors in Nitrous Oxide–induced Antinociceptive Effects in Fischer Rats

Author:

Orii Ryo1,Ohashi Yoko1,Guo Tianzhi2,Nelson Laura E.3,Hashimoto Toshikazu1,Maze Mervyn4,Fujinaga Masahiko5

Affiliation:

1. Postdoctoral Fellow.

2. Research Fellow.

3. Ph.D. Student.

4. Professor.

5. Senior Lecturer.

Abstract

Background In a previous study, the authors found that nitrous oxide (N2O) exposure induces c-Fos (an immunohistochemical marker of neuronal activation) in spinal cord gamma-aminobutyric acid-mediated (GABAergic) neurons in Fischer rats. In this study, the authors sought evidence for the involvement of alpha1 adrenoceptors in the antinociceptive effect of N2O and in activation of GABAergic neurons in the spinal cord. Methods Adult male Fischer rats were injected intraperitoneally with alpha1 adrenoceptor antagonist, alpha2 adrenoceptor antagonist, opioid receptor antagonist, or serotonin receptor antagonist and, 15 min later, were exposed to either air (control) or 75% N2O. In some animals, nociception was investigated with the plantar test after 30 min of exposure, while in other animals, gas exposure was continued for 90 min and the spinal cord was examined for c-Fos immunostaining. In a separate experiment, animals were exposed to the above gases alone, after which the spinal cords were examined immunohistochemically for c-Fos and alpha1 adrenoceptor by double-staining methods. Results The antinociceptive effect of N2O was attenuated by prazosin (an alpha1 adrenoceptor antagonist), yohimbine (an alpha2 adrenoceptor antagonist), and naloxone (an opioid receptor antagonist) but not by methysergide and tropisetron (serotonin receptor antagonists). N2O exposure induced c-Fos expression in the spinal cord, which was blocked by prazosin and naloxone but not by other drugs. N2O-induced c-Fos expression was colocalized with alpha1 adrenoceptor immunoreactivity in laminae III-IV. Conclusions These findings support the hypothesis that N2O activates GABAergic interneurons through alpha1 adrenoceptors to produce its antinociceptive effect.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference37 articles.

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3