A Beta-adrenoceptor Agonist Evokes a Nitric Oxide-cGMP Relaxation Mechanism Modulated by Adenylyl Cyclase in Rat Aorta

Author:

Iranami Hiroshi,Hatano Yoshio,Tsukiyama Yoshi,Maeda Hiroshi,Mizumoto Kazuhiro

Abstract

Background The objective of this study was to characterize the effects of halothane on the agonist-induced nitric oxide-cyclic GMP (NO-cGMP) mechanisms by comparing the intracellular signal transduction mediating isoproterenol- and acetylcholine-induced nitric oxide formation. Methods Isoproterenol-induced relaxations of rat aortic rings with and without endothelia were examined in the absence and presence of halothane. Studies were also done in the presence of inhibitors of nitric oxide-synthase, adenylyl cyclase, calmodulin, protein kinase A, and intracellular Ca2+ release mechanism. The relaxations under some of these conditions were compared with those induced by acetylcholine. Cyclic nucleotide contents of the rings were also measured. Results Isoproterenol relaxed aortic rings via the endothelium-dependent nitric oxide-cyclic GMP mechanism. Inhibition of adenylyl cyclase or of protein kinase A attenuated the isoproterenol-induced relaxations significantly but did not affect those induced by acetylcholine. Inhibition of intracellular Ca2+ release abolished the acetylcholine-induced relaxations but did not affect those induced by isoproterenol. Calmodulin inhibition attenuated both agonist-induced relaxations significantly. Unlike acetylcholine-induced relaxation, that induced by isoproterenol was not affected by halothane. Isoproterenol increased both the cyclic adenosine monophosphate and cGMP contents of rings significantly when endothelia were intact. Inhibition of nitric oxide synthase attenuated the isoproterenol-induced cGMP content increases significantly but did not affect the cyclic adenosine monophosphate content increases. Halothane (2%) did not affect isoproterenol-induced increases in nucleotide content. Conclusions Isoproterenol-induced nitric oxide formation requires the activation of constitutive nitric oxide synthase, but the Ca2+ release mechanism is not involved in activating this enzyme. Halothane can inhibit the nitric oxide-cyclic GMP mechanism only when Ca2+ release is greatly involved in the activation of constitutive nitric oxide synthase.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference59 articles.

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3