Affiliation:
1. Assistant Professor.
2. Research Technician.
3. Clinical Director of Pain Management, Department of Anesthesiology, Eastern Maine Medical Center, Bangor, Maine.
4. Research Fellow, Department of Anesthesiology.
5. Professor, Center for Basic Research in Digestive Diseases, Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine.
Abstract
Background
Lidocaine, a local anesthetic, can be neurotoxic. However, the cellular mechanisms of its neurotoxicity at concentrations encountered during spinal anesthesia remain unclear.
Methods
The authors examined the mechanisms of lidocaine neurotoxicity in the ND7 cell line derived from rat dorsal root ganglion. Individual neurons were assayed by flow cytometry or microscopy using fluorescent probes of plasma membrane integrity, mitochondrial membrane potential, caspase activity, phospholipid membrane asymmetry, and mitochondrial cytochrome c release.
Results
In the ND7 cell line, lidocaine at 185 mm x 10 min to 2.3 mm x 24 h caused necrosis or late apoptosis. Equimolar Tris buffer and equipotent tetrodotoxin controls were not toxic, indicating that neither osmotic nor Na-blocking effects explain lidocaine neurotoxicity. The earliest manifestation of lidocaine neurotoxicity was complete loss of mitochondrial membrane potential within 5 min after exposure to lidocaine at a concentration of 19 mm or greater. Consistent with these data, 37 mm lidocaine (1%) induced release of mitochondrial cytochrome c into the cytoplasm, as well as plasma membrane blebbing, loss of phosphatidylserine membrane asymmetry, and caspase activation, with release of mitochondrial cytochrome c to the cytoplasm within 2 h. Treatment with z-VAD-fmk, a specific inhibitor of caspases, prevented caspase activation and delayed but did not prevent neuronal death, but did not inhibit the other indicators of apoptosis.
Conclusions
Collectively, these data indicate that lidocaine neurotoxicity involves mitochondrial dysfunction with activation of apoptotic pathways.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Anesthesiology and Pain Medicine
Cited by
149 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献