Assessment of Differential Blockade by Amitriptyline and Its N -Methyl Derivative in Different Species by Different Routes

Author:

Gerner Peter1,Haderer Anna E.2,Mujtaba Mustafa2,Sudoh Yukari2,Narang Sanjeet3,Abdi Salahadin4,Srinivasa Venkatesh2,Pertl Christof5,Kuo Wang Ging6

Affiliation:

1. Assistant Professor of Anesthesia.

2. Research Fellow.

3. Instructor in Anesthesia.

4. Assistant Professor of Anesthesia, Department of Anesthesia and Intensive Care, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.

5. Professor of Oral Surgery, Department of Oral Surgery, University of Graz, Austria.

6. Associate Professor of Anesthesia, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, and

Abstract

Background Increasing the duration of local anesthesia and/or creating greater differential blockade (i.e., selective block of pain-transmitting nerve fibers) has been attempted by modifying currently available agents. Most drugs show a different profile depending on the model or species studied. This study was designed to investigate the differential nerve-blocking properties of amitriptyline and its quaternary ammonium derivative in rats and sheep. Methods The Na+ channel-blocking properties of N-methyl amitriptyline were determined with the patch clamp technique in cultured GH(3) cells. Various functions (motor, nociception, proprioception-ataxia) were compared in rats (spinal and sciatic nerve blockade) and sheep (spinal blockade) with amitriptyline, N-methyl amitriptyline, lidocaine, and bupivacaine (partially from historical data). Results In vitro testing revealed N-methyl amitriptyline to be a potent Na+ channel blocker similar to amitriptyline but with a much longer duration of action. All drug concentrations tested in both the sciatic nerve model and the spinal block model produced no significant differential blockade in rats. Three of six rats in the 20-mM N-methyl amitriptyline group showed residual blockade 4 days after sciatic nerve injection. However, in the sheep spinal model, amitriptyline and in particular N-methyl amitriptyline displayed significant differential blockade at most time points. Sheep data for lidocaine and bupivacaine seemed to be more comparable to the clinical experience in humans than did rat data. Conclusions Amitriptyline and N-methyl amitriptyline are potent Na+ channel blockers and show greater differential blockade in sheep than in rats. This differential blockade in sheep is greater than that produced by lidocaine or bupivacaine.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference16 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3