Beat-to-beat Augmentation of Left Ventricular Function by Intraaortic Counterpulsation

Author:

Cheung Albert T.,Savino Joseph S.,Weiss Stuart J.

Abstract

Background Measuring the effects of intraaortic balloon counterpulsation (IABP) in single cardiac beats may permit an improved understanding of the physiologic mechanisms by which IABP improves the circulation. The objective of the study was to use trans- esophageal echocardiography in combination with hemodynamic measurements to test the hypothesis that IABP improves global left ventricular systolic function selectively in the IABP-augmented cardiac beats by acutely decreasing left ventricular afterload. Methods Twenty-seven studies in which the IABP-to-R wave trigger ratio was serially changed from 1:1, 1:2, 1:4, 0:1 (IABP off) and back to 1:1 were performed in 20 anesthetized cardiac surgical patients during IABP support. Left ventricular short-axis end-diastolic cross-sectional area, end-systolic area, mean end-systolic wall thickness, and ejection time were measured by transesophageal echocardiography at the midpapillary muscle level. Aortic pressure was measured simultaneously from the central lumen of the intraaortic balloon catheter. These measurements were used to calculate the fractional area change, end-systolic meridional wall stress, and heart rate-corrected velocity of circumferential fiber shortening. The echocardiographic and hemodynamic parameters of left ventricular preload, afterload, and systolic function immediately after balloon deflation (IABP-augmented cardiac beats) were compared to the parameters measured during nonaugmented cardiac beats to determine the beat-to-beat effects of IABP on left ventricular function. Results IABP-augmented cardiac beats had a decreased systolic arterial pressure and end-systolic meridional wall stress and increased diastolic blood pressure, fractional area change, and velocity of circumferential fiber shortening compared to nonaugmented cardiac beats. IABP did not cause significant beat-to-beat changes in heart rate, pulmonary artery diastolic pressure, or central venous pressure. The improvement in left ventricular systolic function associated with IABP-augmented cardiac beats correlated with the decrease in end-systolic meridional wall stress for that cardiac beat. Conclusions Beat-to-beat echocardiographic and hemodynamic measurements performed in anesthetized cardiac surgical patients during IABP support demonstrated improved left ventricular systolic function and decreased left ventricular systolic wall stress in the cardiac beats immediately after balloon deflation. The relationship between left ventricular systolic function and left ventricular systolic wall stress during IABP support suggests that afterload reduction was an important mechanism by which IABP instantaneously improved circulatory function in anesthetized cardiac surgical patients.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference22 articles.

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3