Mild Alkalinization and Acidification Differentially Modify the Effects of Lidocaine or Mexiletine on Vasorelaxation Mediated by ATP-sensitive K+Channels

Author:

Kinoshita Hiroyuki1,Iranami Hiroshi2,Kimoto Yoshiki3,Dojo Mayuko1,Hatano Yoshio4

Affiliation:

1. Staff Anesthesiologist.

2. Chief Anesthesiologist, Department of Anesthesia, Japanese Red Cross Society Wakayama Medical Center.

3. Instructor.

4. Professor and Chairman, Department of Anesthesiology, Wakayama Medical College.

Abstract

Background The previous study by the authors showed that the class Ib antiarrhythmic drug lidocaine impairs but mexiletine augments vasorelaxation mediated by adenosine triphosphate-sensitive K+ channels. Lidocaine and mexiletine have different values of the negative logarithm of the drug-proton dissociation constant, indicating that the ion channel-blocking effects of these drugs under different pH levels may vary. However, the role of pH in the effects of lidocaine and mexiletine on vasodilation mediated by K+ channels has not been studied. Therefore, the current study was designed to examine whether the inhibition and augmentation of vasorelaxation in response to an adenosine triphosphate-sensitive K+ channel opener, levcromakalim, by the clinically relevant concentrations of lidocaine or mexiletine are modified by mild alkalinization or acidification in the isolated rat aorta. Methods Rings of the rat aorta without endothelium were suspended for isometric force recording. Three types of modified Krebs-Ringer solutions (pH 7.2, 7.4, and 7.6) were prepared by changing the composition of NaCl and NaHCO3. During contractions in response to phenylephrine (3 x 10(-7) M), relaxations in response to levcromakalim (10(-8) to 10(-5) M) were obtained. Lidocaine (10(-5) to 10(-4) M), mexiletine (10(-5) to 10(-4) M), or glibenclamide (10(-5) M) was applied 15 min before addition of phenylephrine. Results Relaxations in response to levcromakalim, which are abolished by the selective adenosine triphosphate-sensitive K+ channel antagonist glibenclamide (10(-5) M), were not different among the three pH groups. In the normal Krebs-Ringer solution of pH 7.4, lidocaine significantly reduced these relaxations in a concentration-dependent fashion. Alkalinization of pH 7.6 augmented the inhibitory effect of lidocaine on these relaxations, whereas acidification of pH 7.2 substantially abolished this effect. In contrast, mexiletine pH independently augmented relaxations in response to levcromakalim. Glibenclamide (10(-5) M) abolished these relaxations in arteries treated with mexiletine (10(-4) M) in any pH group. Conclusions These results suggest that even under conditions of such mild alkalosis or acidosis, vasorelaxation via adenosine triphosphate-sensitive K+ channels is dependent on pH in the presence of clinically relevant concentrations of lidocaine but not mexiletine.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference25 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3