Identification of a Genetic Region in Mice that Specifies Sensitivity to Propofol

Author:

Simpson Victoria J.,Rikke Brad A.,Costello Jennifer M.,Corley Robin,Johnson Thomas E.

Abstract

Background Long-sleep (LS) and short-sleep (SS) mice, initially selected for differential sensitivity to ethanol, also exhibit differential sensitivity to propofol. By interbreeding LS and SS mice to obtain progeny whose chromosomes are a patchwork of the LS and SS chromosomes, the authors determined whether differential propofol sensitivity cosegregates with any particular chromosomal region(s). Such cosegregation is the essence of genetic linkage mapping and a first step toward isolating a gene that can modulate propofol sensitivity in mammals. A gene underlying a quantitative trait such as anesthetic sensitivity is commonly called a quantitative trait locus (QTL). Methods The propofol dose was 20 mg/kg injected retroorbitally. Sensitivity was measured as the duration of the loss of righting reflex (LORR). The LORR and propofol brain levels at awakening were determined for 24 LSXSS recombinant-inbred (RI) strains, derived by intercrossing LS and SS for two generations followed by >20 generations of inbreeding. A genetic linkage between LORR and an albino mutation on chromosome 7 was investigated further using 164 second-generation progeny (F2s) from intercrossing inbred LS and inbred SS mice, similar to the LSXSS RIs except F2s are not inbred. The linkage between propofol sensitivity and the albino locus also was investigated using additional genetic markers on chromosome 7. Statistical significance was assessed by interval mapping using a regression method for RIs and Mapmaker/QTL (Whitehead Institute, Cambridge, MA) for F2s. Results Genetic mapping in the LSXSS RIs revealed a QTL tightly linked to the Tyr (albino) locus that accounts for nearly all of the genetic difference in propofol sensitivity between LS and SS mice. Analysis of propofol brain levels at awakening indicated that this QTL results from differential neurosensitivity. Mapping in F2s confirmed the genetic linkage to Tyr. Mice (ISS c/c x C57BL/6 c2j/C) that differed only by an albino mutation at Tyr were not differentially sensitive to propofol. Conclusions A single QTL, called Lorp1, underlies most of the genetic difference in propofol neurosensitivity between LS and SS mice. Although this QTL is tightly linked to Tyr, propofol sensitivity is not modulated by albinism. For mapping this QTL, the LSXSS RIs proved to be an especially powerful resource, localizing the candidate-gene region to a 99% confidence interval of only 2.5 centimorgans.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference57 articles.

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3