Author:
Honemann Christian W.,Nietgen Gregor W.,Podranski Tobias,Chan Carrie K.,Durieux Marcel E.
Abstract
Background
Thromboxane A2 (TXA2) is a member of the prostaglandin family; activation of its receptor induces several important effects, including platelet aggregation and smooth muscle contraction. Because volatile anesthetics interfere with aggregation and contraction, the authors investigated effects of halothane, isoflurane, and sevoflurane on TXA2 signaling in an isolated receptor model.
Methods
mRNA encoding TXA2 receptors was prepared in vitro and expressed in Xenopus oocytes. The effects of halothane, isoflurane, and sevoflurane on Ca2+-activated Cl- currents induced by the TXA2 agonist U-46619 and on those induced by intracellular injection of inositol 1-4-5 trisphosphate or guanosine 5'-O-(2-thiodiphosphate) were measured using the voltage-clamp technique.
Results
Expressed TXA2 receptors were functional (half maximal effect concentration [EC50], 3.2 x 10(-7) +/- 1.1 x 10(-7) M; Hill coefficient (h), 0.8 +/- 0.2). Halothane and isoflurane inhibition of TXA2 signaling was reversible and concentration dependent (halothane half maximal inhibitory concentration [IC50], 0.46 +/- 0.04 mM; h, 1.6 +/- 0.21; isoflurane IC50, 0.69 +/- 0.12 mM; h, 1.3 +/- 0.27). 0.56 mM halothane (1%) right-shifted the U-46619 concentration-response relationship by two orders of magnitude (EC50, 1 x 10[-5] M). That h and maximal effect (Emax) were unchanged indicates that halothane acts in a competitive manner. In contrast, isoflurane acted noncompetitively, decreasing Emax by 30% (h and EC50 were unchanged). Both halothane and isoflurane had no effect on intracellular signaling pathways. Sevoflurane (0-1.3 mM) did not affect TXA2 signaling.
Conclusions
Both halothane and isoflurane inhibit TXA2 signaling at the membrane receptor, but by different mechanisms. This suggests that the effects of these anesthetics on TXA2 signaling are evoked at different locations of the receptor protein: halothane probably acts at the ligand binding site and isoflurane at an allosteric site.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Anesthesiology and Pain Medicine
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献