Affiliation:
1. Research Associate.
2. Assistant Professor of Medicine, Department of Medicine (Neurology), Duke University Medical Center.
3. Professor of Biophysics and Anaesthetics.
4. Sir Ivan Magill Professor of Anaesthetics, Departments of Anesthetics and Biological Sciences, Imperial College of Science, Technology and Medicine, London, United Kingdom.
5. Associate Professor of Anesthesiology, Department of Anesthesiology (Multidisciplinary Neuroprotection Laboratories).
Abstract
Background
With clinical data suggesting a role for excitatory amino acid neurotransmission in the pathogenesis of cardiopulmonary bypass (CPB)-associated brain injury, the current study was designed to determine whether xenon, an N-methyl-D-aspartate receptor antagonist, would attenuate CPB-induced neurologic and neurocognitive dysfunction in the rat.
Methods
Following surgical preparation, rats were randomly divided into four groups: (1) sham rats were cannulated but did not undergo CPB; (2) CPB rats were subjected to 60 min of CPB using a membrane oxygenator receiving a gas mixture of 30% O2, 65% N2, and 5% CO2; (3) CPB + MK801 rats received MK801 (0.15 mg/kg intravenous) 15 min prior to 60 min of CPB with the same gas mixture; and (4) CPB + xenon rats underwent 60 min of CPB using an oxygenator receiving 30% O2, 60% xenon, 5% N2, and 5% CO2. Following CPB, the rats recovered for 12 days, during which they underwent standardized neurologic and neurocognitive testing (Morris water maze).
Results
The sham and CPB + xenon groups had significantly better neurologic outcome compared to both the CPB and CPB + MK801 groups on postoperative days 1 and 3 (P < 0.05). Compared to the CPB group, the sham, CPB + MK801, and CPB + xenon groups had better neurocognitive outcome on postoperative days 3 and 4 (P < 0.001). By the 12th day, the neurocognitive outcome remained significantly better in the CPB + xenon group compared to the CPB group (P < 0.01).
Conclusion
These data indicate that CPB-induced neurologic and neurocognitive dysfunction can be attenuated by the administration of xenon, potentially related to its neuroprotective effect via N-methyl-D-aspartate receptor antagonism.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Anesthesiology and Pain Medicine
Cited by
141 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献