Anesthetics Affect the Uptake but Not the Depolarization-evoked Release of GABA in Rat Striatal Synaptosomes

Author:

Mantz Jean,Lecharny Jean-Baptiste,Laudenbach Vincent,Henzel Danielle,Peytavin Gilles,Desmonts Jean-Marie

Abstract

Background Numerous classes of anesthetic agents have been shown to enhance the effects mediated by the postsynaptic gamma-aminobutyric acid A (GABAA) receptor-coupled chloride channel in the mammalian central nervous system. However, presynaptic actions of anesthetics potentially relevant to clinical anesthesia remain to be clarified. Therefore, in this study, the effects of intravenous and volatile anesthetics on both the uptake and the depolarization-evoked release of GABA in the rat striatum were investigated. Methods Assay for specific GABA uptake was performed by measuring the radioactivity incorporated in purified striatal synaptosomes incubated with 3H-GABA (20 nM, 5 min, 37 degrees C) and increasing concentrations of anesthetics in either the presence or the absence of nipecotic acid (1 mM, a specific GABA uptake inhibitor). Assay for GABA release consisted of superfusing 3H-GABA preloaded synaptosomes with artificial cerebrospinal fluid (0.5 ml.min-1, 37 degrees C) and measuring the radioactivity obtained from 0.5 ml fractions over 18 min, first in the absence of any treatment (spontaneous release, 8 min), then in the presence of either KCl alone (9 mM, 15 mM) or with various concentrations of anesthetics (5 min), and finally, with no pharmacologic stimulation (5 min). The following anesthetic agents were tested: propofol, etomidate, thiopental, ketamine, halothane, enflurane, isoflurane, and clonidine. Results More than 95% of 3H-GABA uptake was blocked by a 10(-3)-M concentration of nipecotic acid. Propofol, etomidate, thiopental, and ketamine induced a dose-related, reversible, noncompetitive, inhibition of 3H-GABA uptake: IC50 = 4.6 +/- 0.3 x 10(-5) M, 5.8 +/- 0.3 x 10(-5) M, 2.1 +/- 0.4 x 10(-3) M, and 4.9 +/- 0.5 x 10(-4) M for propofol, etomidate, thiopental, and ketamine, respectively. Volatile agents and clonidine had no significant effect, even when used at concentrations greater than those used clinically. KCl application induced a significant, calcium-dependent, concentration-related, increase from basal 3H-GABA release, +34 +/- 10% (P < 0.01) and +61 +/- 13% (P < 0.001), respectively, for 9 mM and 15 mM KCl. The release of 3H-GABA elicited by KCl was not affected by any of the anesthetic agents tested. Conclusions These results indicate that most of the intravenous but not the volatile anesthetics inhibit the specific high-affinity 3H-GABA uptake process in vitro in striatal nerve terminals. However, this action was observed at clinically relevant concentrations only for propofol and etomidate. In contrast, the depolarization-evoked 3H-GABA release was not affected by anesthetics. Together, these data suggest that inhibition of GABA uptake, which results in synaptic GABA accumulation, might contribute to propofol and etomidate anesthesia.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference39 articles.

Cited by 62 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3