Xenon Does Not Impair the Responsiveness of Cardiac Muscle Bundles to Positive Inotropic and Chronotropic Stimulation

Author:

Schroth Sylvia C.1,Schotten Ulrich2,Alkanoglu Orkide3,Reyle-Hahn Matthias S.1,Hanrath Peter4,Rossaint Rolf5

Affiliation:

1. Staff Anesthesiologist.

2. Research Fellow, Department of Physiology, University Maastricht, Maastricht, the Netherlands.

3. Medical Student.

4. Professor, Department of Cardiology, University Hospital RWTH Aachen.

5. Professor, Department of Anesthesiology.

Abstract

Background Most volatile anesthetics exhibit a direct myocardial depressant effect. This side effect often limits their applicability in patients with impaired cardiac function. Xenon is a new gaseous anesthetic that did not show any adverse cardiovascular effects in clinical and experimental studies. The authors tested the hypothesis that xenon does not affect myocardial contractility or the positive inotropic effect of isoproterenol, calcium, and increase in pacing rate in isolated guinea pig ventricular muscle bundles. Methods Thin ventricular muscle bundles from guinea pig hearts with a mean diameter of 0.4-0.45 mm were prepared under stereomicroscopic control. Force of contraction and contraction times were studied in muscles superfused with medium equilibrated with either 65% xenon and 35% oxygen (xenon group), 1.2% isoflurane in oxygen (isoflurane group), or 65% nitrogen and 35% oxygen (control group). In addition, the positive inotropic effects of calcium, isoproterenol (10(-10)-3 x 10(-8) M) and increasing frequency (0.5-2 Hz) were studied during xenon and isoflurane exposure. Results In contrast to isoflurane, xenon did not alter myocardial force of contraction or contraction times. The positive inotropic effect of isoproterenol, calcium, and increasing pacing frequencies did not differ between the muscles exposed to xenon and the control group. Isoflurane elicited the expected negative inotropic effect (30% reduction of force of contraction) but did not impair the response to inotropic stimuli. Conclusions Xenon does not alter myocardial contractility and the response to inotropic stimuli such as calcium, isoproterenol, or increase in pacing frequency in isolated guinea pig ventricular muscle bundles.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference27 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3