Halothane and Enflurane Attenuate Pulmonary Vasodilation Mediated by Adenosine Triphosphate-sensitive Potassium Channels Compared to the Conscious State

Author:

Seki Sumihiko,Sato Kosei,Nakayama Masayasu,Murray Paul A.

Abstract

Background Adenosine triphosphate (ATP)-sensitive potassium (k+ATP) channels play an important role in pulmonary vasoregulation. However, the effects of volatile anesthetics on k+ATP channel-mediated pulmonary vasoregulation have not been elucidated. The purpose of the present study was to investigate the effects of halothane and enflurane anesthesia on the pulmonary vasodilator response to the selective k+ATP channel agonist lemakalim (BRJ38227) compared with that measured in the conscious state. The authors also investigated the extent to which endogenous neurohumoral vasoconstrictor mechanisms modulate the vasodilator response to k+ATP channel activation. Method Nineteen conditioned, male mongrel dogs were chronically instrumented to measure the left pulmonary vascular pressure-flow (LPQ) relationship. LPQ plots were generated by continuously measuring the pulmonary vascular pressure gradient (pulmonary arterial pressure-left atrial pressure) and left pulmonary blood flow during gradula (approximately 1 min) inflation of a hydraulic occluder implanted around the right main pulmonary artery. After preconstriction with the thromboxane analog, U46619 (9,11-dideoxy-11 alpha, 9 alpha-epoxymethano-prostaglandin F2 alpha), the pulmonary vascular dose-response relationship for the k+ATP agonist lemakalim was assessed in the conscious and halothane-anesthetized states and also in the conscious and enflurane-anesthetized states. This protocol was repeated in conscious and halothane-anesthetized dogs after combined neurohumoral block with antagonists of sympathetic alpha 1 adrenoreceptors, arginine vasopressin V1-receptors, and angiotensin II receptors. The effect of the k+ATP antagonist glybenclamide on the baseline LPQ relationship and on the lemakalim dose-response relationship also was assessed in conscious dogs. Results Compared with the conscious state, halothane, enflurane and glybenclamide had no net effect on the baseline LPQ relationship. In contrast, halothane and enflurane attenuated (P < 0.05) the pulmonary vasodilator response to lemakalim compared with the conscious state. Glybenclamide also caused a rightward shift (P < 0.05) in the lemakalim dose-response relationship. Combined neurohumoral block did not modulate the vasodilator response to lemakalim in the conscious state. The halothane-induced attenuation of the vasodilator response to lemakalim was apparent after combined neurohumoral block. Conclusion These results indicate that halothane and enflurane act to reduce the magnitude of K+ATP channel-mediated pulmonary vasodilation. Reflex pulmonary vasoconstriction resulting from K+ATP mediated systematic hypotension does not alter the magnitude of the pulmonary vasodilator response to lemakalim nor is it responsible for the attenuated response to K+ATP channel activation during halothane anesthesia.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference42 articles.

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ion channels and transporters as therapeutic targets in the pulmonary circulation;Pharmacology & Therapeutics;2014-12

2. Peripheral Circulation;Comprehensive Physiology;2012-01

3. Pharmacology of Anesthetic Drugs;Kaplan's Cardiac Anesthesia: The Echo Era;2011

4. Pulmonary Pharmacology;Miller's Anesthesia;2010

5. Control of pulmonary vascular tone during exercise in health and pulmonary hypertension;Pharmacology & Therapeutics;2008-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3