Mild Hypercapnia Induces Vasodilation via Adenosine Triphosphate-sensitive K+Channels in Parenchymal Microvessels of the Rat Cerebral Cortex

Author:

Nakahata Katsutoshi1,Kinoshita Hiroyuki1,Hirano Yusei1,Kimoto Yoshiki1,Iranami Hiroshi1,Hatano Yoshio1

Affiliation:

1. * Staff Anesthesiologist, ∥ Chief Anesthesiologist, Department of Anesthesia, Japanese Red Cross Society, Wakayama Medical Center. † Assistant Professor, ‡ Staff Anesthesiologist, § Instructor, Professor and Chairman, Department of Anesthesiology, Wakayama Medical University.

Abstract

Background Carbon dioxide is an important vasodilator of cerebral blood vessels. Cerebral vasodilation mediated by adenosine triphosphate (ATP)-sensitive K+ channels has not been demonstrated in precapillary microvessel levels. Therefore, the current study was designed to examine whether ATP-sensitive K+ channels play a role in vasodilation induced by mild hypercapnia in precapillary arterioles of the rat cerebral cortex. Methods Brain slices from rat cerebral cortex were prepared and superfused with artificial cerebrospinal fluid, including normal (Pco2 = 40 mmHg; pH = 7.4), hypercapnic (Pco2 = 50 mmHg; pH = 7.3), and hypercapnic normal pH (Pco2 = 50 mmHg; pH = 7.4) solutions. The ID of a cerebral parenchymal arteriole (5-9.5 microm) was monitored using computerized videomicroscopy. Results During contraction to prostaglandin F2alpha (5 x 10(-7) m), hypercapnia, but not hypercapnia under normal pH, induced marked vasodilation, which was completely abolished by the selective ATP-sensitive K+ channel antagonist glibenclamide (5 x 10(-6) m). However, the selective Ca2+-dependent K+ channel antagonist iberiotoxin (10(-7) m) as well as the nitric oxide synthase inhibitor NG-nitro-L-arginine methyl ester (10(-4) m) did not alter vasodilation. A selective ATP-sensitive K+ channel opener, levcromakalim (3 x 10(-8) to 3 x 10(-7) m), induced vasodilation, whereas this vasodilation was abolished by glibenclamide. Conclusion These results suggest that in parenchymal microvessels of the rat cerebral cortex, decreased pH corresponding with hypercapnia, but not hypercapnia itself, contributes to cerebral vasodilation produced by carbon dioxide and that ATP-sensitive K+ channels play a major role in vasodilator responses produced by mild hypercapnia.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference35 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3