Isoflurane Produces Delayed Preconditioning against Spinal Cord Ischemic Injury via  Release of Free Radicals in Rabbits

Author:

Sang Hanfei1,Cao Lin2,Qiu Pengxin3,Xiong Lize4,Wang Rongrong2,Yan Guangmei5

Affiliation:

1. Postdoctoral Research Fellow, Department of Pharmacology, Zhongshan Medical College, Sun Yat-Sen University; Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University.

2. Ph.D. Student.

3. Associate Professor.

4. Professor and Director, Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University.

5. Professor and Director, Department of Pharmacology, Zhongshan Medical College, Sun Yat-Sen University.

Abstract

Background Whether isoflurane preconditioning produces delayed neuroprotection in the spinal cord is unclear. The authors tested the hypothesis that isoflurane produces delayed preconditioning against spinal cord ischemic injury and, further, that the beneficial effect is dependent on free radicals. Methods In experiment 1, 63 rabbits were randomly assigned to seven groups (n = 9 each): Animals in the control group only underwent spinal cord ischemia without pretreatment; animals in the Iso24h, Iso48h, and Iso72h groups received 40 min of 1.0 minimum alveolar concentration isoflurane in 100% oxygen each day for 5 consecutive days, with the last pretreatment at 24, 48, and 72 h, respectively, before spinal cord ischemia; animals in the O2 24h, O2 48h, and O2 72h groups received 40 min of 100% oxygen each day for 5 consecutive days, with the last pretreatment at 24, 48, and 72 h, respectively, before spinal cord ischemia. In experiment 2, 48 rabbits were randomly assigned into four groups (n = 12 each): Animals in the O2 and Iso groups received 3 ml/kg saline intraperitoneally 1 h before each session of oxygen pretreatment and isoflurane pretreatment, respectively. In the DMTU+Iso and DMTU+O2 groups, 10% dimethylthiourea (DMTU, a potent free radical scavenger) dissolved in saline (3 ml/kg) was administered at the same time point. Twenty-four hours after the last pretreatment, animals were subjected to spinal cord ischemia. Spinal cord ischemia was induced by an infrarenal aorta clamping for 20 min. Forty-eight hours after reperfusion, neurologic function and histopathology of the spinal cord were examined. Results In experiment 1, the neurologic and histopathologic outcomes in the Iso24h and Iso48h groups were better than those in the control group (P < 0.005 for each comparison); the neurologic and histopathologic outcomes in the control group showed no significant differences in comparison with the O2 24h, O2 48h, O2 72h, and Iso72h groups (P > 0.05 for each comparison). In experiment 2, the neurologic and histopathologic outcomes in the Iso group were better than those in the DMTU+Iso, O2, and DMTU+O2 groups (P < 0.01 for each comparison); there were no significant differences in the neurologic and histopathologic outcomes among the DMTU+Iso, O2, and DMTU+O2 groups (P > 0.05 for each comparison). Conclusions Isoflurane produces delayed preconditioning against spinal cord ischemic injury, and the beneficial effect may be dependent on the release of free radicals.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference34 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3