Influence of Propofol on Neuronal Damage and Apoptotic Factors after Incomplete Cerebral Ischemia and Reperfusion in Rats

Author:

Engelhard Kristin1,Werner Christian2,Eberspächer Eva3,Pape Monika4,Stegemann Uta3,Kellermann Kristine5,Hollweck Regina6,Hutzler Peter7,Kochs Eberhard8

Affiliation:

1. Assistant Professor of Anesthesiology.

2. Professor of Anesthesiology.

3. Resident.

4. Resident, Klinik für Anästhesiologie, Johannes Gutenberg-Universität, Mainz, Germany.

5. Intern.

6. Assistant Professor, Institut für Medizinische Statistik und Epidemiologie, Technische Universität, Munich, Germany.

7. Assistant Professor, Institut für Pathologie des GSF-Forschungszentrums, Neuherberg, Germany.

8. Professor of Anesthesiology and Chairman, Klinik für Anaesthesiologie.

Abstract

Background Propofol reduces neuronal damage from cerebral ischemia when investigated for less than 8 postischemic days. This study investigates the long-term effects of propofol on neuronal damage and apoptosis-related proteins after cerebral ischemia and reperfusion. Methods Male Sprague-Dawley rats were randomly assigned as follows: group 1 (n = 32, control): fentanyl and nitrous oxide-oxygen; group 2 (n = 32, propofol): propofol and oxygen-air. Ischemia (45 min) was induced by carotid artery occlusion and hemorrhagic hypotension. Pericranial temperature and arterial blood gases were maintained constant. After 1, 3, 7, and 28 postischemic days, brains were removed, frozen, and sliced. Hippocampal eosinophilic cells were counted. The amount of apoptosis-related proteins Bax, p53, Bcl-2, and Mdm-2 and neurons positive for activated caspase-3 were analyzed. Results In propofol-anesthetized rats, no eosinophilic neurons were detected, whereas in control animals, 16-54% of hippocampal neurons were eosinophilic (days 1-28). In control animals, the concentration of Bax was 70-200% higher after cerebral ischemia compared with that in animals receiving propofol over time. Bcl-2 was 50% lower in control animals compared with propofol-anesthetized rats during the first 3 days. In both groups, a maximal 3% of the hippocampal neurons were positive for activated caspase-3. Conclusions These data show sustained neuroprotection with propofol. This relates to reduced eosinophilic and apoptotic injury. Activated caspase-3-dependent apoptotic pathways were not affected by propofol. This suggests the presence of activated caspase-3-independent apoptotic pathways.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference27 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3