Author:
Pan Hui-Lin,Chen Shao-Rui,Eisenach James C.
Abstract
Background
The role of spinal nitric oxide (NO) in neuropathic pain remains uncertain. Although intrathecal clonidine causes NO release in the spinal cord, the functional role of spinal NO in clonidine-produced analgesia has not been examined. The objectives of this study were to assess the role of spinal NO in maintenance of allodynia and to determine the role of spinal NO in the antiallodynic effect of intrathecal clonidine.
Methods
Allodynia was produced in rats by tight ligation of the left L5-L6 spinal nerves. Intrathecal catheters were inserted with tips in the lumbar intrathecal space. Mechanical allodynia was determined by application of von Frey filaments to the left hindpaw. In the first series of experiments, allodynia was assessed before and after intrathecal injection of saline, L-arginine, an NO donor (SNAP), two NO synthase inhibitors (TRIM and NMMA), or an NO scavenger (PTIO). In the second series of experiments, 20 microg of clonidine was injected intrathecally 15 min after intrathecal injection of saline, TRIM, NMMA, or PTIO.
Results
Allodynia was not affected significantly by intrathecal injection of L-arginine, SNAP, TRIM, NMMA, or PTIO. The antiallodynic effect produced by intrathecal injection of clonidine was attenuated significantly by pretreatment with TRIM, NMMA, or PTIO.
Conclusions
These results demonstrate that spinal NO neither contributes significantly to maintenance of allodynia nor produces detectable antiallodynic effect in this neuropathic pain model. Furthermore, this study provides functional evidence that spinal NO plays an important role in the antiallodynic effect of intrathecal clonidine in neuropathic pain.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Anesthesiology and Pain Medicine
Cited by
59 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献