A New Equal Area Method to Calculate and Represent Physiologic, Anatomical, and Alveolar Dead Spaces

Author:

Tang Yongquan1,Turner Martin J.2,Baker A Barry3

Affiliation:

1. Research Fellow, Department of Anaesthesia.

2. Research Fellow.

3. Nuffield Professor of Anaesthetics and Head of Department.

Abstract

Background Physiologic dead space is usually estimated by the Bohr-Enghoff equation or the Fletcher method. Alveolar dead space is calculated as the difference between anatomical dead space estimated by the Fowler equal area method and physiologic dead space. This study introduces a graphical method that uses similar principles for measuring and displaying anatomical, physiologic, and alveolar dead spaces. Methods A new graphical equal area method for estimating physiologic dead space is derived. Physiologic dead spaces of 1,200 carbon dioxide expirograms obtained from 10 ventilated patients were calculated by the Bohr-Enghoff equation, the Fletcher area method, and the new graphical equal area method and were compared by Bland-Altman analysis. Dead space was varied by varying tidal volume, end-expiratory pressure, inspiratory-to-expiratory ratio, and inspiratory hold in each patient. Results The new graphical equal area method for calculating physiologic dead space is shown analytically to be identical to the Bohr-Enghoff calculation. The mean difference (limits of agreement) between the physiologic dead spaces calculated by the new equal area method and Bohr-Enghoff equation was -0.07 ml (-1.27 to 1.13 ml). The mean difference between new equal area method and the Fletcher area method was -0.09 ml (-1.52 to 1.34 ml). Conclusions The authors' equal area method for calculating, displaying, and visualizing physiologic dead space is easy to understand and yields the same results as the classic Bohr-Enghoff equation and Fletcher area method. All three dead spaces--physiologic, anatomical, and alveolar--together with their relations to expired volume, can be displayed conveniently on the x-axis of a carbon dioxide expirogram.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference19 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3