Intrathecal Adenosine following Spinal Nerve Ligation in Rat

Author:

Bantel Carsten1,Tobin Joseph R.2,Li Xinhui1,Childers Steven R.3,Chen Shao Rui1,Eisenach James C.4

Affiliation:

1. Visiting Research Scholar.

2. Associate Professor of Anesthesiology.

3. Professor of Physiology and Pharmacology, Department of Physiology and Pharmacology.

4. FM James, III Professor of Anesthesiology, Department of Anesthesiology.

Abstract

Background Intrathecal adenosine produces a remarkably prolonged effect to relieve mechanical hypersensitivity after peripheral nerve injury in animals. The purpose of the current study was to investigate whether this reflected an alteration in kinetics of adenosine in cerebrospinal fluid or in the number of spinal A1 adenosine receptors after nerve injury. Methods Male rats were anesthetized, and the left L5 and L6 spinal nerves were ligated. Two weeks later, a lumbar intrathecal catheter and intrathecal space microdialysis catheter were inserted. Adenosine, 20 microg, was injected intrathecally in these and in normal rats, and microdialysates of the intrathecal space were obtained. Radioligand binding studies of adenosine A1 receptors were determined in spinal cord tissue from other normal and spinal nerve-ligated rats. Results Adenosine disappeared from rat cerebrospinal fluid within 30 min after intrathecal injection, with no difference between normal and spinal nerve-ligated animals. A1 adenosine receptor binding sites in the spinal cord were increased after spinal nerve ligation. This increase disappeared when adenosine deaminase was added to the membrane homogenates, suggestive of decreased endogenous adenosine in the membranes of nerve-ligated animals. Conclusion These data show that prolonged alleviation of hypersensitivity observed with intrathecal adenosine in this animal model of neuropathic pain is not due to prolonged residence in cerebrospinal fluid, although pharmacokinetics in tissues are unknown. Similarly, there is no evidence for up-regulation in spinal A1 adenosine receptors after spinal nerve ligation, and the adenosine deaminase experiment is consistent with a depletion of adenosine in spinal cord tissue after spinal nerve ligation.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference24 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3