Artifact Robustness, Inter- and Intraindividual Baseline Stability, and Rational EEG Parameter Selection

Author:

Bruhn Jörgen1,Bouillon Thomas W.1,Hoeft Andreas2,Shafer Steven L.3

Affiliation:

1. Postgraduate Fellow, Stanford University School of Medicine.

2. Professor of Anesthesiology, Chairman of the Department of Anesthesiology and Intensive Care Medicine, University of Bonn.

3. Staff Anesthesiologist, Palo Alto VA Health Care Center. Associate Professor of Anesthesia, Stanford University School of Medicine.

Abstract

Background Artifact robustness (i.e., size of deviation of an electroencephalographic parameter value from baseline caused by artifacts) and baseline stability (i.e., consistency of median baseline values) of electroencephalographic parameters profoundly influence electroencephalography-based pharmacodynamic parameter estimation and the usefulness of the processed electroencephalogram as measure of the arousal state of the central nervous system (depth of anesthesia). In this study, the authors compared the artifact robustness and the interindividual and intraindividual baseline stability of several univariate descriptors of the electroencephalogram (Shannon entropy, approximate entropy, spectral edge frequency 95, delta ratio, and canonical univariate parameter). Methods Electroencephalographic data of 16 healthy volunteers before and after administration of an intravenous bolus of propofol (2 mg/kg body weight) were analyzed. Each volunteer was studied twice. The baseline electroencephalogram was recorded for a median of 18 min before drug administration. For each electroencephalographic descriptor, the authors calculated the following: (1) baseline variability (= (median baseline - median effect) [i.e., signal]/SD baseline [i.e., noise]) without artifact rejection; (2) baseline variability with artifact rejection; and (3) baseline stability within and between individuals (= (median baseline - median effect) averaged over all volunteers/SD of all median baselines). Results Without artifact rejection, Shannon entropy and canonical univariate parameter displayed the highest signal-to-noise ratio. After artifact rejection, approximate entropy, Shannon entropy, and the canonical univariate parameter displayed the highest signal-to-noise ratio. Baseline stability within and between individuals was highest for approximate entropy. Conclusions With regard to robustness against artifacts, the electroencephalographic entropy parameters and the canonical univariate parameter were superior to spectral edge frequency 95 and delta ratio. Electroencephalographic approximate entropy displayed the best interindividual and intraindividual baseline stability.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference18 articles.

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3